AUTHOR

TITLE

INSTITUTION
PUB DATE
NOTE

PUB TYPE
EDRS PRICE
DESCRI PTORS

Verhille, Charies; Ed.
Proceedings of the 1983 Annual Meeting of the
Canadian Mathematics Education Study Group (7th; Vancouver, British Columbia; June 8-12; 1983). Canadian Mathematics Education Study Group: Nov 83
13lp.; Poritions may be marginally legible due to small print. For earlier proceedings; see ED 188872 ; ED 204 120, and ED_234 988-989.
Collected Works - Conferencé Proceèdings. (ól)
MF01/PC06 Plū Postāge.
Computer Science; *Educational Diagnosis; Educational Research; *Language Role; Māthematics; *Māthematics Curriculum; *Mathematics education; *Mathematics Instruction; *Problem Solving; Research Reports; Statistics; Teacher Education
Canada; *Mathematics Education Research

ABSTRACT .

The papers in this document follow the order of the meeting and consist of two guest lecturers and reports from four working groupsi two topic group presentations are noted but not included. One lecture; delivered by Peter Hilton; discusses the nature of mathematics today and implications for mathematics teacking, while; in the other paper; Stephen i- Brown explores the nature of problem generation in the mathematics curriculum. Working group reports concern statisticăl thinking, training in diagnosis and remediation for tēachers, mathematics and language, and the influence of computer science on the undergraduate mathematics curriculum. Topic groups heard presentations by Daniel Kahneman on intuitions and fallacies in reasoning about probability and by Tom Xieren on mathematics currićulum development.in Canada. A list of participants is given: (MNS)

* Reproductions supplied by EDRS are the best thāt cān be made *

σ

to the educational resources inforimation center (eric)."
$\overline{2}$


```
CMESG/GCLEDM
1983 Mecting
pROCEEDINGS
```


Pago

Int if
Editor's Forward iii
Lecture I - Current Trends in Mathematics and Future Treñs-iñ Mathematics Education - Peter miton $\cdot \mathbf{1}^{-1}$
Lecture if - The Nature of problem Generation in the Mā thematics Curriculum - Stephen I. Brown 28
Horking Groups -\bar{A} - Developing Státistical Thinking Claude Gāínand Jim Swift56
Appendix 1 - Statistics in the School Curriculum, R. J. MácKay 70
B - Thaining in Diagnosts and Remediation for Teachers; Douglas Edge and David Robitaille 73
C - Mathematics and Language, William lifgqinson and 86.
nppendix 1 - Mathematics and Language, David Wheeler 86
तppendix 2 = Language Usage in Mathemating, Martin Hoffman 91
sElementary Algebra Symbol Manipula ${ }^{\circ}$tion; David kirshner96
D - The influence of computer Scilence on the Under- graduate Mathematics Curriculum; John Poland 102
Topic Group -L - Intuitions and Faliactes in Reasoning andprobability, Daniel Kahneman120
M - Mathematics Curriculum Development in Conada:\bar{A} projection for the füure, tom Klèen120
List of Päticipantes 122

Canailinin Matliomaties lílication Sendy Group/

1983 Weat 1in

 and íc allows time for topacs to lie foljowed chrongli, botídirjing yach meeting and frotn one meeting to the next:
 and Stephen Brown (SUNY at Buffaló), ? The former spoke on 'ino batnre

 curriculun". Their leitures were stimulatlig and provociatlvot but perliaps deven more signifirant were chetr iudividialicontributions to
 Scledulud; decures were given by Daniel Kalueman (ibs) on "intuitions

 aspecte of teaching matlumatics".

 matics and linguage" and "The infliuence of compurer eselence in the ;
 plan to produce paprors or shoft mollograplis on the banis of their discusislons.

 mectings, perliaps becionse, travelilige exprinc support is less oiny to cone
 came coo large; it secms a pity tiat many mithematics departanents ani
 ing infurmation about the Study Group may gie jin touli with the writer or. With B:R: lludgson; Département de mathenatiqucs; Universiti Laval. Québec, qué., GIK 714.

David Mieclux Depinctaniot of mitiomatice
Concordia Universicy

EDTTOR'S FORIJNIRD
 used for several years: . The agenda included two leifires presented by pronilient persons; four working groups; onch
 ences; iwo topic groups and continuing groups. in ádítion; the prograin included a computer workehop and opportinitics fōr ā hoc sessiōns.

The lectures were presented by peter iliton of the State Uñ uersity of New York at Bingliamton and steplina Brown of the state university of llew fork at Buffalio. The papers fion both lectures are included in these prococdings in their chtirety.

Reports from each of the working groups are includnd.
The text of the Topic Group prescinted by Dainicul
Kohmeman entitied "intentions añ fallaçes in reasoning
about prohability is not included. liowover, some rafarences which tnciude related tecturat materíai are inciuded:

Charles Verilille EDITOR

$$
\therefore . \dot{i}
$$

- 1 -

LECTURE 1
curreeit treind in mathematics

- and future trends in mathematics
enucation

BY
PETER HILTON
DEPARTMENT Ó MÁTHEMÁtićs
STATE UNIVERSITY OF NEW YORK AT BINGHAMTON

6

ERIC

- 3

 lije is measimfed by afifucnct and is minifisted by paratir anal influence ovor otheis. It is very ioterint in iny thome to fecall that; when Quecn lilizabeth was tocently the oucst ol lifesfaledt

The Keaganissi Sinatrist ifew of suctoss ionlituintos a

 At worst, this viç fends to a complicie distorínin ulicediciational process; it the veiry leasi, it ilifes ediaition far too
 nately has che suppori of. many farents uintifilijy iminums fat their cilijuren's success.

 tlistags.

-5.

 thon ihat it leads io haderstanding and skill: shogi cits to the

 ... -.....if it Jues not, it hecomes out-ditud. No real alifitioto ipply
 the mosi frequent and naturnj resujit is the behiojour paifén Known as 'mathomatics avoldalice'. fhils does it irimspire eliat
 mmanarencss of ignorimce.

This then is my casc for the vital tole uf a sumad
 critcria of success.
2. Trends ial Mathema!ics Today

The three frincipai hinad trends in mathematics today i.

 in discoss them imilinduilly.

10

is couspionnusị irik

 iñolral in llis juncoss.

 Mif íc.

$=7=$

- of the methods being employed, añol to he able to analyse bow stahle ihe resultes are and the exturt to which tlic methods miy be . modifical to suit new situations.

 body woild sertousiy suggest that a piece of mathematifs be sifgatized as finipicabic just because it happens not yet to have been appijed. fhus a fárer jistinction than that hetwecn 'pure' , und 'applicd' mathematics would secm to be nuc hetween
 remarks suggest we should take the experimental view that the inter. sectioil of inapplicable mathematics and kond mathematics is probahly
 bainty if onc understands that apliying mathematics is very often
 prohicmi we form a scientific modei of ilic probiem and then con-"

 matical model; we mạy well fél compelicd to constrict a new

 partial differcitial equation by bringine to bear a general theory of élifíce differcintial operators. Now the process of modeling
 is apparentiy not confined to pure mathematics: Indeed, it may well be cmpirically true that if is more often found in the study of applied probícms than in rēscarch in pure máthematics., thias we
sec, first, that the concept of alfilicabic mathematics necils to be broid chobiti to inchade parts of mathematios aplitable to sone
 chat the methods of pure and applicd matiomitios have much more bin

 mathenatics cllleation to be drawn from looking at thisctrend in

 matiematics: and, second, opportinities io present ilplications
 cuīricicialuin.
$7=$
The second trend we have identified is that of a new
 [3], so we will not go into great detail here. We womla onty wish

 Up to ten jeas ako the most chatracteristic feature of this resench was the verticil development of alltonomons disciplines, sume of which wete of vory recent origin. thins the conminity of maties

 category theory, commative ríng thoury, real analywis, complex
 some would aryne that no reai commuity of mathematicians exisied. since fociabists in distinct ficids were barefy able to commuicate i

$=9=$
with each other. 1 do not impute any fạult to tice system which
g prevailed in this period of remarkably vigorous matiematical
 'correct"- but it docs appear that these aitonnois disciplines are now being linked together in such a way that mathematics is being reunificch be may think of this develojment as 'horizontal': as opposed io vertical growth. Examples are the, use of commutative. ring theory in combinatorics, the usc of coliomology theory in abstraci algebra, algebraic geometry, functionil analysis and partigi differential equations, and the use of lie group theory in many mathematical disciplines, in relativity theory and in invariant genge theory.
i belíeve that the appropriate culucation of a contemporā̀ mathematician must be broad as well as decp, and that the lesson to be drawn from the trend toward a newfunification of mathemacics : mast involvera similar principle. We may so formulate it: we must brcak down artificial barriérs bétween matherasicicaítopies throughout the stulent's mathematical educat ions.

The 'third trend to which have drawn attention is that. of the general availability of the computef and fís roic in actunimp changing the face ōf mathematics. The computer may cucntuaily take. over our lives; this mould be a disaster. l.et us assume this disaster can be avoided; in fact; lésus assume further, for the
 an chtirely constructive role in our lives and in the evolution of áp ōur mathematics: What wili then be the cefectist.
 toplcs jinto grcater prominence-if is even cansing matiematiclans to
 complexity

 paíulcsily to cariy out numertcal work. so fant we may accompany

 bé aware of certain risks to the validity of the solution ohtained
 The computcr ís éspeciāīy adept at solving prohioms lívolving hiterace procedures, sothat the method of successive uppioxima.
 hand; the compinter renders obsolete certaln maticmaticai techniques Which have hitherto been prominent in the curricium: a sifficient examile is furnished by the study of tecliniquesonf integráton.
there is, great debate raxing as to the impact which
 [6]). Withont taking sides in this debate, it is plajn chat thére should he a noticeable impact, and that every toplc must lice examined .
 piaín that no curriculum today can be regarded is complete untess it prepires the student to use the compinter nnd io undersinid ies
 reaitizuion of cits sconc and its limitations; and we shontánhandon
 practice. Ihat the poincipai purpose of mathematical cducation is to entiole the child to become nin effective computer cencnif deprived

Let me elaborate this point with the following tahle of conparisons: On the left list duman ácíribūces añ añ thẹ fight
 calculacing engine. I stress this point becnuse I must empalisize that in ngi here thinking, of the computer ns a research tool in
 am talking of contempurary human beings nid contemporary computers. Computcrs evolve very much fastér than human bejngs so that thér characteristics may well undergo dramatic change in the span of a human lyetince With thesc cavertes; let me display the table.
llumans
Compate slowly and inaccurately.

Aré intercsicd in many things ant the sumc timc.

Sometimes give up
Xré often intelligent and under: standing.
liave idcas and imagination, make inspircd guesses; think.
nind dedicatcd.
Compinters
Compute fast and accurately:
 bc diverted.

Are úsūily pélañtic añ rituticr stapial:

Can exccite '11... ELSE'
instrictions.
liman and Computer Attributes
it ís an írony that we secm to tcach mathematics as if our objective were to replace ench human attributc in the child by

- 12 -


```
nomiñally dedicáced to qhe development of eãch humañ being;s indi-
vidanl capacities. Lé us agrec to leave to the computée wlint the.
computcr does hest and to design tlic tenching of matheinatics as a
```



```
remarkibly significant consequences for the design of the curricu-
|um; 立c topic to whiche we now tur呆.
3. The Secondiry Curriculum
```



```
principlo That"is; we will list the topics which should`be 'in*
or stroñly cmphasized; and the topics which should be 'Out' oŕ
```



```
styles. Hic do not ciglm that all our recommendations are siricily
contemporiry, in the sense that they are résponses to tiécurrent
```



```
those devoted to questions of renching practice, are of n lasting
nature and shonld; in my jưgmeñ ; havve becen adopted lonésilnce.
```



```
by commentary. We begin with the 'Out category, since this is
```



```
gory.we first consider .pedagog
```


$$
=14=
$$

l'ōintessness mears ümotivatíd mathenaticail process.

 futurc dite. it will become ciear why the curient piece of wnite":

 integral cilcilus--just as much strange arithmetic done at fic elementáry fevel ucan only be jústified by tíe suadent subsequent
 of presciting to tie student applications of the mathematics being

 stíly of a mathematical topic, the application must be interesting. Witil regard to the expendible topics, teajous liand calculations have obviously been rendered obsolete hy the avalla-
 - appaíinR trivestics or mathematics in tiécurricuinm can be explaincu only by ineitia or sadism on tife part of the teacher
 metrić functions (esjeciaily as functions of real variabies) nnd tlieir bisic identities; but compifcated identicies shonld be ellme
 geometric bruofs ís very important; inventing onés own ís in spiendid expericuce rór che student; but memorizing proors is a

 student juncessing n mathemntical expression which came fron
nowhere, invoiving n combination of purentheses, negatives, and
fractions; and reducilip the expression to ne more socially acceptabie: this is ubsurd; but; of course; the stitdent mist learn how to substitute numerical valies for the variables apparing in netural mathematical expressioll.

Lét us how thin to the pōsitive side: since, as our first. recommendation below indicates, we are proposing an integrāted approāh to tise curriculun; the "topics we jise are rather

Iñ (Secondà̄ $\mathrm{Le} \overline{\mathrm{v}} \mathrm{e} \boldsymbol{l}$)

1: Teaching Strātegies

2. Toples

Geometry and Ajépra (e,ge, lincar and yundrattc functions, equations and inequalifics).

Prolability and statistics.
Aproximation and estimation, setentific notacion.
iterative piocedures; successive approximation.
Rationai numbers, ratios and rates.
Arithmetic mean and Reometric mean (and hurmonic mean).
Eiementary number theory.
paradoxes.

Coumentary

 and, but it is the most charactcristic of the whole tenor of this
 and wq must tench mathematics to stress this. it is not trues as some ciaim; thát ali good mathematics-orr even ali appicable matié mátics .. lins irjsen in response to the stimulus óf probiems coming from outside mathematics; but it is true. that ali good mathematics has arisell from the then existing mathematics; frequently- of course: : under the impulsc of a real. world proniem: thus mathemitics is an interrelated and highly articulated discipline; nad we do violence to its true nature by separating it-for teaching orvesearch

 plexity of our thécedeminsional mubience to one-dimensional

 for patterns and order ing apparent chaos. We conclude that gepometry is a naturai conceptual framework for the formalation of auestions
 methot of inswering questions and achieviag pesults. This. role is preeminenty pinyed by algebra. dif geonctry ís a sonrce of ques: tions nnd aigebra a mcans of answering them, it is jiainiy
**idicilous to separate them. llow many stindents have suffered chrough, ifgeliri courses; learniag methods of solition of probiems

- 17 -
coming from nowhere? The result of such comparthentalized
 and of the pointiessness of mathematics itself.

Fhe good sense of including applications and, where
appropriate, references to the ilistory of mathematics is súrejy self-evident. Both these recomendations could be included in a brouder jinterpretation of the thrust toward an integrated curýcūlum. " The qualification that the applications should be simple is Intended to convey both that the applications should not inkolve sophisticated scientiflc ideas not availabice to the students. this is a frequent defect of traditional appijed mathematics and that the applications should be of actual iñorest to the student, and not meresy important. The notion ot fiexibility with regard to the curriculum is inherent in an integrated;approach; it is obviousiy inherent in thé concept of good teaching. Lét us admit howevér, that it can ōnly be achicued if the teacher, is confident in his, ōr hér; mastery of the mathematical content. Finaily; we stress as a téching strategy the use of thé halıd: . calculator: the mínicomputer and, where appropriate, the computer not only to avojd tedious calculations bit also in very positive ways: Certainiy we inciude thẹ opportunity thus provided:for dojng actual numerical examples with real-iffe data, and the need to re-examine the emphasis we give to various toplcs in the jightóq of computiug avaíability. We mention here theumater of computer aided instruction, but we bélieve that the advantages ō this use ir

With regard to topics, we have already spoken about the link betweeil geometry and algebra, a topic quite iñge énough to
 riculum simply because no member or ajmodern indistrinifzed socicty can afford to be igncrant or thesésumjects; which con-
 reasoling to bear on the world around us. We point outi in adution, that noproximation and estimation techinumes are essentiat for checking and interpreting muehine calculácions.
it is my helicf that much less attention shonld be paid to gencrai resuits on tice convergence of sequcuces and sericos; abd much, more on fllestions rēated to the rapidjty of convergence and $\overline{\text { i }}$ the stabijity or the jimit. This aplifes even more to the rertiary jevel. However, à the fecondary jevel; we should be emphaniziag itcrative proverumetsince these are so weil ndapted tocompiter programming. jerhans the most imporiant resuit.-fijí of intérest -
ing apjlicitions.-istiac a sequence $\left|x_{n}\right|$, satisfying x_{n} :

 notion of proof and definition by induction shfid be recast iñ
'machinc' langange for today's student.
The next recommendacion is integrative in liñ uré yet it refers to cliange whicio is long overdue practions start iffe

 not themselves mimbers; the numbers they represent are ratiounl

humbors. of course, oue comes to speak jf them ns numhers, bilt this should only himpen when onc. has earined the ifkit to be sjoppy
 rational numbers are explicáisy intruduced, then it hecomes unnecessary to treat ratios as new and distinct juantities. Rates also may then be understood in the context of ritios and dimensioun abalysis. Jowever, there is a further aspect of tic notion of rate which it is lmportant to include at the secondary lovel. I refer to average rate of change and; in particular; average spec̃. The principies of gramanticai constructioll suggest thát in ordar to understand the composite term 'averige speed' one must understand the constitucnt terms average' and ispced". Thisfis quite
 of tho terms 'average'; 'speed"; and is not; in fact; th lr composítc. A discussion óf the abstractions íveragé and ispeedo at the serondary level would be valuable in itself and an exceticnt preparation for the difforentiai and integrai caicuíusi

Related to the notion of avernge is; of course; that of

 hármonic means and of the rēations betwen them. The fact thit
 a_{ai} is never less than their geometric mean and that equajity
 many manimum or minimum rosulvs which are traditionaljy treated ns

paradox; a result whtch conflicts with conventional thinking, not n iesult which is sclf-contradictory: A consequence of an effect
 scepticism which protects thé individual against the blandishments of self-serviñ propagañists, be thē purveyors of perfumes; . toóchpastes. ór politics. In this sense a consideration of paradoxes fully deserves to be classified as mplicable mathematics: An éxample of a paradox would be the following: students \bar{A} and Bof mūst sübmit to twenty tests during the school térm. Ūp to half term, student A had submitted to twelve tests and passed three,
 for the first half of the tére, $\bar{A} \cdot \bar{s}$ average was superior to $\overline{\mathrm{B}}$'s. In the secone half of the term, A passed ail the remaining elght tests, while b pasised tweive of fhe remaning fourteen. Thus, for the second half of the term: A's average was also superior to B'ss Over the whole tern; A passed éteven tests out of iwenty, whílé passed thireeen tests out of twenty, giving a substantialiy better aferage than \bar{A}.
4. The Elementary Curriculum :

This artici三 (inke the taik itselfof is aiready. inordinately iong. thus i wili permit myseif to bémuch briefer with my commentary than in the discussion of the secondary curriculum, believing that the rationale for my recomendations will be ciear in the light of the preceding discussion and the reader's own experience. 1 wif again organize the discussion on the hasis of the 'in' and 'Out" format heginning with the cout' ilst.

Ngitil, we rurn to the positive slde.

In (l: lementary lovei)
-

1. Tenthing stratesies

As for the secondary icvel.
luployment of confident; capahic and cuthusiastic tuahers.
2. Topics

Numbers for countifg and measurcment--the two arithmetics. $\quad m$
Division ns a mathematical model in various contexts.
Apfroximation and estimation.
Averages afid statistics.
Practical; iuformal geometiy.
Geometry aud mensuration; geometry and probability (Nonte Carlo method):

Gometry and simple equations nud incqualities :
Negitive numbers in measurement; vecior addition.
fínctions and etcmentary prōbibility theñy:

Commentiai

Snme may object to onir inclusion of the tonclicer refinire-
 its onission at tic secondary level: Ne find it abiropriate,


```
how absolutely essentlal the gond teacher is to success at the: 
    elementary levej, but also to indicate our disagreement with the
```



```
    computer-alded instruction; to design a 'teacher-proof' curriculum.
```



```
    certain ceriffication procedures in the United States do not
    refiect the prime importance of mathematical compotence in the
    armoury of the good elementary teacher.
    We close with a few bricf remaiks on the tofics listed:
    it ls an extraurdinary triamph of litiman thought tiát the same
    system can be ascd for counting and measurement--but tie two arith-
    militcs diverge ill esscintial respects-- of colurse; in many,problems.
    both aritlimetics are involved: Measurements are inherentiy
    imprecise, so that the arithmetic offmeasurement is the arithmetic
```



```
        The separation of division from its context is an
```



```
    becn disciussed ciscwlicre {7]; here let it süfficee tiàt the solũtion
    to the division problem 1000 ; 12 should depend on the context of .
    the problem and not tlie grade of the stuclent:
            Cicometry slioũld be a thread riñalng tlirougli tlie
    student's conire mathemattcal educatlon--we liave stressed this at
    the secondary level: llere we sliow how goometry and gripling
```


\rightarrow ~
and shoult be jinked with key parts of elementary mathemntics. We recominial plenty of experience with actual materinis (e.g.
 but very little in the way of geometric proof. llence we recommend practical, informal geometry, within añ fintegrated curriculaw

We claim it is easy and natural to introdice negasive
 motivátion nhounds. The multiplicatlon of negative nūhers 'ilike the addition of fractions) can and sliould be postponed.
 àríthétical operation on fractions. The othé operiations shōid be dealt witi in context-and probahility theory provides an exceifent confext for the addition of fractions: it is; hofever;
 for the inciusion, already decided on, of \bar{n} given topic. .
tíc iden of a'finite algoritlim, and that of reciñive definition. alie contraj co computer programing. Sicicialeas will need to he clarificd in the mathematics cinssroom, since nowliere
 is reasonilife to hope that todays sindents wili have become ramiliár whth the concepthal nspects of the computer in their difily fives.unless commectini jnterests succed in presenting the microcomptiter
as primnity the source of arcade games.

But this is just one aspect of the generit manise of our contomponily suciety, and desorves a mich more thoroigh irent ment than we can give it here. it is fime to rest my inse.

Dibijography

1. Apenda för Action for thésu's; NCTM (1980).

2. The kole of Aphlications in the Undergraduate curriculum. N. R.C. Wnstimgton (1979).
3. Peter llition and ican podorsen, Approximatime any regular

4. foter ilitron do westili need tateach fractions, Proc. Icini: jv (1983), 37-4i.
5. The future of Coliege Mathematics, Springer (1983).
6. Peter llilton and Jean Pedersen. Fear No More; Addison Wesiey (1983).

State University of New York; Binghaman Baitēilo luman affaírs Rosearch conters, seatéce

the mature of probleil generation in the mathematics
 CURRICULUM

BY
STEPHEN I. BROHN
FACULTY OF EDUCATION

33

The Neture of Proble Genvretion in the

Mathenatice Curriculum*

- Etephon I. Brown
State Univerafty of fiow York it Butialo.
i
$\overline{\mathrm{I}}$ - Some Pereonal Rumineetonci

 matice educatore; and achool ceachere) than betwen euch eroupe.

1 euepect thet thie eddreee will ravēi yet enother kind of divertity and even incompatibility for which there way be elightiy leée toierancei namely inconeiatenciee within the individual; The problem (to uee orord the wil

 ercicie ín whéh my coilengua, Marion Malter, and ventured into che territory.

 with the wem theme in Fly (Brown. 198i); but ouptinking í obout td euiminate:

 In Vancouver. Caneda: oot bé bored by yet oñe more foräy into a ficid that I hava had a hand in eatabísininy over a conaiderable pariod of tlme. i could of courac add a amall nitch to that alrendy ēfāblizhed tradicion. Aftē conaldarabie refiaction
 reconatruct for you a large portion of the entife Exirina but i will attempt
 tng auch of what looks like repetition from new enough perapective ac thā you ill have the opportunity to lielp unearth fór men not oniy new potential; but the
 aniliàr with whá $\overline{1}$ have pravioualy urften and who wiah co get on with thé yatery, I recommend eliat you focua upon my comienta deailing with morality and íth the relncionstíp of a problew co alruation.

> II = The Rhecoric of Problem solvink

Though ic was not my original intention to integrate thla preáantāion wíh ter Hilton's, it turns out that coupla of fratuitoun remarke on problem oolving : the end of lida presentation provide natural entrae for much of wiat I have. ; say.

To begin; hé polnta out correctly tiat onè douan'e marely soiva problema the abstracti rāher one aolvea apecific.problcmas. Hia point then táchat ona a to know tilings (nnd preferably a lot of tilnga) before afhe can nojve probiana, d that it is a mintake co engnge people tin probiem aolving behuvior before they ve acquired some healthy repertolre of knowlealge. The tmplication ī ciñe we
 thematics hētō̄ wé ērgage them in nolvinig probieme.

 of problem aolving in the firat place:
 not imply thut choes "thingu" theanalven are "acquired" totaliy independentiy of
 followlng art loglcaliy or temporally rē̄éd E

Being filled up with knowledge

problem aiving
Whila lt mity be trua eliãe a "Ehting" (call it knowledge if you wiah) ia

 empty veasel cān bē filled up: "Coning to knou" anything ia radicaily different from being filied up and the former ahores acour iaportant alamente with the

 Chrough combination of loglcal analyaia and encouragament to join me in intro-

 tion will turnigh the backgroind munle for much of what i will be naylug:

 te alao da: in meed of repair. Tle comante that a major ulficinity with the

$$
=\overline{32}=
$$

at the wronk wot with regard to inquliry. Thint iñ. de loads un io focun un

 ation in cermen of tio logic and che potental priccicu of problem nolving in

${ }^{\circ}$
 notire of (he hiterreductonship and che independence of prublem sulving and problem genceriit liog:
In prepiration for pruviding auch ínkages, i wauld liku to dweil bicte longer on prubiea solving perge. By the end of thim eoction; che compeiling need to rōlate the cwo will begin to ewerge.
 che cwo culcures-roughly che aciences ond the humantien-hinve deñinéd E
 (Snou. 19559)

man's condition. on the other bend, thu arlentiats halieve chat che

and education with that of the humanities.
 about, houever we have not only neglected to bulid bridges, but we have tended to ignore mat non-mathematical educational tarrain that wight bē worth conneétfing in Elie firá placéa
in perticular, we have overiooked those educationni efforta in other riedds which have been concerned with problen solving but have indicated Ehate concern. chrough àfferant ianguage. Dewey's inalyais of "rēfective éhoughé" and of chs concept of. "Intelilyence" would seen to offer a rich compliment to much of

 of Poiya, and would offer options we have not yet incorporated in much of our thinking obout problem aolving in the currictulun; (Dewey, 1920, 1933)
 we in mathematics education, hava tended to view in pale "discovery exerciac" terma at beat. Yet the use and analyais of dialogue in educationai netefing has been the hallmark hot only of Englishí education; but of eẹveral cirriculum programe in

 carty on intelígent diàogue: but more importantiy to unearth and to discuse controveraial and nometines incompatibie pointa of view, foíver and Neman,

 In the socisi atúdies as well as in the newly poerging ficid of philonophy for: : childreñ wighe coñble us cō hōp ātudente appreefate irreconcilable differencea

 that io worth underatanding not only bechuse of ite connection with problem colving, but becanse the theme io pratentiy ondergning rés fuvenation in the non-
 and acience.

 1asuea that emerge hiere and those that we develop th the noxt pection are part

 democratic socilaty. How do we go about euch edurntion in a public achool aettink

 ond if so, why it is thatr nuch ocollection io more neutral than any religivia
 whatever valijes niè aitōpta dnea provide an entreé for thona concarned with moralify in a pliuralistic anctety.

ITaina dilemma:

 drug cuat hlm to make, the ntck wisani a hashand lioling, want to everyone Jo knew to bortuw the moing. bat he could unly $\mathbf{8 a t}$
 that_ble vife wan dylñ find ābed hin to weil it choruer or det

 La through diacussing and juatifying reaponuce to auch dileman that ntudante

It ia not ilí epacific value that ona choowe (e.g.; wtent the drug va;
户̄ōic alone acaié uf morai developmont.

- At che lowest levei of mornj maturity; (pre-conventional) Kuhibuite fiño

 AE che higheat or atage oz principied morajity one argien on the basiç nut of
\qquad
rules that could conçivabiy chañe bū wíh regard for abacract principlos of Justlce and rēspect fō̄ out falrnes and infrirtialliy as part of the very dufinition of morolity.

 Rather they form part of the web that ia used to juatify the déciaione made: End $1 E$ to capabie of deciding upon one's level of móral dovejopment.

neglecta to fouous upon nction, it ía refreahing counterpoinc tō program of
noral ducation whicil conceives of ita role an onc of inculcieing mecific
 criticiam of hía scheare recentiy-a criciclan un

 longitudinai research only with maloe Once cite octieme wan cianted and the atpges developmentaily construed, Kohibē̄ lineerviewed femalea and conciuded,
 Corm of moral developmente:
 zory acheme for min hud womēn n̄̄̄ ōnly any he è consequence of different paychologicai dynnioics ibuc racher than exhibiting n logicaily inferior gind Bet; it auggenta moral categoriē that ore denperateiy in need of ficorporation Ath those níready derivede compare the followingitwo reaponsea to tie leinz

Tor one thing huan life is worth more than money, and if the drupgiat maké oniy \$1000, he í etili going to iive, but if likine
 worth more than money? Because the drugstat can set a thougand dollár iáter from rích peopic wíh cancer. but lieinz canit set hía uifé agala. (why noti) Becaupe people ara ail difforent and 00 you couldn't get lleinz". wifa again. (ciliggan, 1982, p. 26)

Any on cha ocher hand equívocaeá in reaponding to whether or not lleinz

hhould ateal the drug:

Weil. i don't ehink eo. i ehink ehere bisht be other waye bendea otealing it, lika if he could borrou the money or make a loan or gopething, but he really ahouldn't ateal the drugrobut hia wife ahouldn't die either. If he otole the drug; he wighe age his wife then but if he dide he wight bave to so-to jail. and then his wife mighe get aicker again; and he couldnit get more of the drug, and $1 t$ ghe not be sood. So: they should really Jutt telk It out and find aome other yay to make the money: (p; 28)

Motice that Jake accepta the dijeman and begina to argue ovē tie rāisetonohip of property to life. Any; on the other hund, ia less interáted in properíy and focusea more on the interpersonel dynamica amons the chiaractéry. tō̄e
 for eome lean polarized and lese of a zero oum game:

Kohibers'a interpretation of quch reapoñe would imply that have a mature underatending of the n̄èū̄e ō the moraj iasue involyedi-that ahe

 responsea hes concluded not chat the femalea are arieated in their abllity to

 cine:

Cilligan (1982) commenta with regard to Amy' reapolise:
Where an awarenean of tha connection toutwoan people given rize
to na recognition of renponability for one another. a perception
of the inced for responae. Seen in this. 11ghit, her underatandine
of morallty as artalng from the recogintion of relationahip;
hēr belicf in comminicmtion ag che node of confltectresolution.
gand her convíction that the solutiont of the dilewin vili follow.
1y. J numatire. ($\mathrm{p}, 30$)

The differcuce between à "Kohlbergian" and acilifgniah" conception of moraility is well captured by two different adūt reaponace to the queation what doea morality mean to youp".
(L.yons; 1983) A man interviewad commenta

Hornify ía banicaliy havine reason for doing what er right, what
 to ciliose fromamongse alternativen being able to recognize when then. having aome resan for athak and when there is not; ant

-

A woman interviewed on; the an̄e quention commentas
Moraify is a_type of conactounnesa, t guean aenaftivity to
humanity, chat you can affece momeone clac ainfe. You can iffect
 other people' complex. Morality ta rēlizing chat incre ia anlay between aeli and otherg mid that you aré golig to have to take responatifility for both of them; it dort of a consc fousnese of your influence over whit is goling ōn'(p. 125)

While cilitging and her associatea do not claf(that development ín aex
 gendér, they do ciním tō hāve lóc readily uith à femilc than a míle volce. Behind the female volce of réponai=

1. A context brindḗnear,
2. A disinclinātion co set generál principies to be uied iñ fūure caaen, 3. A concerit with connectedness among puople.

Though not ail of chèse chnracteristics are exhibited in Amy reaponne,
 2 pled for unicu lüformation that také the form not unly of rafuenting more
 aarchlog for way of lōating the epiode withia à broader context. Thus wilika men o meture women might Eend to respond not by trying to rasolve the dicama; but by extibiting a seña of lndignation that auch a situation aa cilie

 doun cifeumeancea Ehat caused our aociety to ovolva in auch a way chat dilemana of thia aotc could even ariacythet people have learned to mincomanticáa ao. poor 1y' $7^{\text {º }}$
 co underutand each aituation in a frenh lighó rather ción iñ légeliāic

 \rightarrow to aee how it might be dfferent fron (and thue rā̄ī̄̄ nē Inaight) réther than compatible with one chat han elready bean atticied

Wíh regard to the third charecteriacic; conffict ia lean e logical purale co ba freaolved but racher an indlcation of an untoŕcounate fracéure in human rāationshipa-acmething to be manded" réthax cion en invitation for noma judgeñont.

In the gext anction we turn towā̃a e conaldagation, in a rather global
 che atudy of methematica. While ve hava not yet drawn any explicit linka.
 that it aeta é poaniulé foundacion tor the relationahip of problem generaíion: co problem colving. Though we aball theua upon the findinga from efu field r of morel education; we do not wiah to loae aiglic of nome of tho other mumaniacic of areá of curriculum from which mathematice elucation might derive ealighenmonto
₹
Som of whit wn huve alluded to eariter in titicemeion wili form tive backyround - mác for wiat follows:

> ií - Kuhlherg va. Gilitgang The Transition Ernm Solvingto oustor

 hà an intuition for such propocition, when alio commentémith regrta to

Fascinated by the power of loglcy chígeleven-year old_boy lucetec truch iñ anci, whtch ho eajs ia "the only thing that ie totally logical." Considering the moral dileman to be "eortiof like a
 prncerais co wōk pit the eolution. Since his eolution is rat loinity derived, he bspumes that unyone foliowing redson wuid aritive at the ame concluaion und thus that judge would conetder

The met of'probleme to be molved acia we the exiome and definitiant

 the non-purpusefin tams.

 not the "ṇosfé that inheriem in Eive prōice

diecipiines. in perticular quanions of vilue ofr ochice ore esenticily non-
 rationsie for relating menteatici to other Tielda eeem to be that euch

 McGinty and Meyerson (1980) ugkest mome Eepa one bight want to take zo
 begin uith prublem like che tōiowingi
 Would lue nēeded to unizornly cover 1850 squere feet \bar{f} (p. 501)

So far so duit. It Is' not only'thac for many sudents tie obove would
 importantiy it lāke byy reasonable conception of context boundedneas. The euthors; however: $\overline{80}$ on to品㐫t of the wora problema budente encounter. They mek:

Should the perion buy s bage ind enve the leftover-miguring pricee W111 riae next ydari Duy 5 bage onis eprend it thicker? suy \& bage and spread it thinnert (p. 502)

 As próession, we correctiy appreciate that wo need to do moré tó préñ̄̄
 the find of exactitwde that buch of the earifer curriculum bus inpited. In

 probabíity probium (selected et randow of course) from any curículum in
$\because \quad-\quad-73-\quad$,
nothanaice with the foliowing proliability probiemi
Actose relstive of youra_has been hit by an aytomobile. lie ha baen unconec inus for one_month. The doctora have cold you chat unless be in operatad, upon for the reat of bia life: Thusy can parforin añoperition which, If oucceasful would reptore hit conaciouanag. , They.have detcr-

 wil caríainly dí.

What councel would you zive the doctopel one could ciãiry embed the above
 conditiona that would have enabled one to arrive at the, 05 probability (or

 that plague mont thinking peopia as they so chrough lifémaking decioiona.

 god-eiven and written ín etone chat eutablichan what ie and ia not part of ehe domin of nathematica, and cleariy wat han conatituted lagitimate chinking in that dipelpline han changed connlderably ovpr time. i an not famillar anough witio
 häve beèn räaponsible for driving people to reconcaptunilze the diecipiline of mathematica, bul oven if queationa of the kind wa hava been rainting iñ thié eection

 a reaponalbility to future citizene chat cranucende our pucaing along only mathe-

 who will not expand the ficld per ze. We have miacakenty ldentified our rask. $\overline{\dot{B}}$

\dot{v}
han echieved empirical axpreasion vith regard to iamuea of nōgilicy but which
 of carine and reaponsibility, astabilabed by Gilitgan, we.find dimansiona that are not atrictly moral in character but wheh dabi with putpose sicuetion

 iatica, and in fact the dominant mode cecer̄ to their opposite. o

Secondy; we have not only umed cillisan in contrāt to roliberg to eatablish broad cécegoriea uithin which the present curriculun if deficient, but wa have: pointed out that what the twō per̄pectivea have in common-mamely a concern with
 with athematical thinking ae are the nore atandard diaciplinen that form the backbone of more conventioñil popilcāioñ.

3
Both of thée pē̄āectivie have potentialiy revolutionary implicatione. They not only suggeat the need for both teacher and etudent to incorporite aore
 raised at the beginning of the previoun aections an an easential ingredient of problea eolvinḡ bū they have the potential to infect every aspeçe of mathematice
 atructures.

1 will fō the most part be drawing upon and integrating ideas that t have previnuris

 rēponsiblé the joining of ilnke explicitly in other matienticieducation. arence

3
$\therefore 4 \overline{6}$.

 fect en "outsider" by the degrae to which you are incapable of undaratanding the thort-circuiting of language amons participanẹ. Thare ia cartainly good reaton for membera of an "in-group" to angage in auch ahort-clrculting behaviorIn addition tó merély increãing êficiency of comumicetion; there are ímportant

 that reaulte from euch behavior not only may lanve ua unavare of what we have lefe out, but worace than that, wé may even loee our ability to incorporate thoáa auareneases within our world viow pava when they are pointed out to ua.

As educitory, it lá worth teking acock every eo often fo examiee expliciéty Whât we are lenving out in ehe common lengunge we are aerábliahine with our

 iñ nubler theory, and were hoping to derive a formule tō generão priaitive Pythagorean tripiets. We bagan the leanon by aking:

$$
-\bar{x}^{2}+\bar{y}^{-2}-z^{2} \text {. What are como anaverā }
$$

Responses began to fiow, and atudenta responded, withi

$$
\begin{aligned}
& \text { 3. 4. } 5 \\
& \text { 5. 12; } 13 \\
& \text { 8. } 15.17
\end{aligned}
$$

$i_{i} i, \sqrt{2}$.
51

A fö more courageoua and humoroua reaponges then were auggeated likes

$$
\begin{equation*}
-1 ;-i ; \sqrt{2} \tag{u}
\end{equation*}
$$

Harion and I then jokingly reprimanded the "deviantes, and procejded to

What etrack ue wan that
 comon language with ite unspoken but builc in eanumptons. Notice that $\bar{x}^{2}+\bar{y}^{2}=\bar{p}^{2}$ ia not even a queation. How can one come up with anawerst

Yet the atudante dutifully did come up with anmwers; because they carried

Theys aeaumed (at leant at the beginning) that the aymbilem had connoted thive the
 c̄īing for uomething oigebraici and within that context they asomed thit wi wera. eearching for instancea that would make en open aentence truéa
 oomithing we had not seen ve realized that there was ionoie new bali game at
 ciaea. we vere opening Pandurä́ bux.

For whát rational nu-bera z y

Roaifing that we liad fmpigitiy anmumed chat we were gearching for true inatancea of the dpen sentence; ve encouraged etudenta to abk uch new questiona as:
 trua? (e.s.; 4; 7: 8 misace the equalíty ty i).

Realizing that we had implicity agaumed that the question was algebraic;
 tions of tlie aigebraic form.

 eventially on all of us wă gomething that hea had a lagetng effect

 primitive pythagorean criplet quention; all of un gained a much clentar undex́-
 Ebout-not onjy from che point of view of etatament bue of proof as well.

 so. atrong towarily the aearch for molutione and answara, tiat ye continue to.
 on our journcy to try to underatand the role $\overline{\text { of }}$ probpem genarat ton to the dofne of machematica.

 atanding of the role of poning problema that lave not jeen beforé deapite
 fague is unioulided. For a number of yearà, educatora have appreciated chat chere

 eak builitin questions. it íe the job of the utudent co create a quesion or

 tiona weil.
 that the pedagozicai ísue in uch dēeper dià moré interéting than that; of mereiy creating rich aituation co inveatigatáa The iasue ia evan more complemed

 waye to nove frōin one to elie oeher.

The cajk of moving in neitber mechanical nor eary. That it mometime

 problem can te neutrilized (or deponed as the titic of this gection pleyfully
 whō rēilie that we have been asking the wrong queationa realize implieitiy tie need to move from a problem to - altuotion before re-posing ehe problem.
 the drug; but fether one of figuring out how we evon evolved ue a ecelety auch

 drugi) before moving towarda a re-posing of the problem.

 ia also vorth deaigning curícinium जisch exhlbite the difficultié people had In making auch movaa oii théry onn in the history of the diacipiline. Wa have the
 culture frum which it emergea aéve atudy thoae probleme that conld not ba percelved as altuatioña:

An obvious example tin the history of mathematics ie that of efforts ovar aeverni centurics tó try to prove the parallél poatulate. Conader the follouine formulation of thé quécātiona
of Eucacliticān geometry

We kñow nū that a great deá of tha history of mathematica van uritten ee

 aense, lobarlievsky and hín colleaguea at the time had in fact to "neutrailie"
 (Ehé postinates of Eucifican geomerry) and then to-reformilate the queation so a to delicie the deceptively innocent yord "llow" 111 the poing of the problem.

- 51 -
to appropriateiy ilemarcate bunderiea. Untíl recentiy the pruhiem was "merely"
- to pruva or diaprove that conjectura. oniy afcer a cumputer proof vas proluced which featured a very largo numbar ō upeciá cases did mathematiciann begin to realizc that they hud not adaquatoly pumed the prublem. Fealinf that a computer proof wan blind to underlylag atructura and fafact illumiated very
 tha need to atate the problem in auch a way that "ngly" proofe would not count aa nolutions. \because il
 the pramene atitide of miny nethematicinna with regard to the computér, but.

Fróm pedagogical polat of vicw, it ici paricularly enisghtening tōengage

 cifcuastances under which a triangle ia datarained hy an atigle, another angle und - aida not fincluded between the anglea.
 had inveséigated those conditiona under wheh a triangie uae decermined. Jomana looked very puzzied and told wo that i vas miataken; they had never inveatigated the determination of a traagie. Inatead they, ład proven inings about two

What was taking place here ia very intereating from the point uf view of reifting a probiem co a aituation. jordan had in fact vievel min entire unit of work mora áa aituetion, whic i lud viewad it aan problew. That is. though ha had an argenal of congruanca theoremas at hia diapoasl to respond to nny

 book had in lact uever diatilgul fhed between an underiying prohlom (deternining

Thu interesting irony in chis case ia that the difference between my pera

 Eccurately annwar questiane end even solve difficulf problema without secing the contex wíchin which éhnse probiem are ebbedded.

This. it would seen to be very wise pedagoglcal ploy co move not only
 de-pose a hheorem anch am nitu base anglé of an ianaceica triangie are congrutnty, hut co do so for entire unity as well. Teachera an weli an atudenty would find it cnitghteninf to discover the arens of agreement mud divergence of opinion rugarding the problemínituetion atatuy of a unit or perhap even of a conrae.
 difficulcy relating situation co problem that Peter liliton atlúded in fin hie

 prepared co liñile. life comment appenta on tie mufface to be a threat to the
activity of poang and deposing problang. That ia, what happena if in the creation of problem from aituation. atudent dofinea problem that we knou la beyond hia/her ability to handlef

There are aome intareating aaumptiona embedded in the above queation.
 problens they pose. Tha activity of posins itaelf in the absence of afforta
 out as much of value about ouraelves by attending to the kinds of quentiona we ank aa we do by the aolutiona we actempt.

Secondiy. if we think of an entire ciass as unit; for the kinda of activitiea auggeated in this aection; it is not necessarily the case that tha
 wa may discover the potential for unexpected coliahoration anōne thōā wiō pōē and those who attempt aolutiona. We do nut know very much at all bout the relatlonship of the talent of poains añ ā̄iving but fe pē̃ - clue frum the work of Getzels and Jackaon (1961) in which they find renaon

Out there is another consideration that cuta deepar than those we have

 problema that efther we (as teachéra) or thày posá such an expactation may be

 ought co come an apprectation for partial solutions as a reapectable activityo.

 solve prolitem and cannot even come up wich partial nolutiona. Suppose chey
cannot aven identify or laolata lemana that micht hip thō along the way i : can imagine a great deal of valuabla parsonal añ intailectual inaĝot that * - ifgit emerge through a diacusaion of what asy account for inability of atudenta

 ae a reason for failure to make hendway:
VII - The Ace of Poining Loric and Pedogesy

In relating proticm poìing tō the creation of aicuationa, we hovej benath
 colving. After ali, it way due to an inability to alve the paraliel pontulata. problem that a zeneration and problem eolving are tātmately connected, hnwever, even when -thinga do not go nury. solow we diacuas their intimpte logical counection: in
 pédagogical strategies tor engaging in problem posing-ona mild and the other
 dispā̄̄̄e sources, and i víew the task here aes one primarily of consolidaring chat wnterial: for that rason thia acctiun will be briafer than the others (thank coad:) and the reader'a atention wili be drawi to relevant referencea fór expanston of thé pointé alinded to.

Loslcal Conneetions With Solvingi Being Gracious and Acceptin̄
Considir the foilnwing two problemaz
(1) Atiy nnd train are 15 kme apart. The traln eravain cowarde

 to tte starting point. After_bittiog the starcine potinc, it once mure heada bnck toward the crolio uncil they meēe. Thie

$$
=55=
$$

 whoce area is equal to that of tian aum of the oflier two.

The firat problem reveala in a drametic way aomething that ia true but

 \because id le liowly: proparly, you will come upon an inalght that will monk likely

 that hae not been asked in the problam at all. Though thara ara many diffarelit
 the foliouing vill mate likely bá revaeling

What do 1 natice if ifocue not on tha fiy á requestedi but ón the trīn sinarēd?

1
 nēw prōīlem wichiñ the context ōf accepting and tryins to aolve a given probleme

 bingaa on how it la that one definae probiew in the firat place. (See Erowno: :

Thua aecnnd uroblem revala anolier intereating intimate connection betmeen problé aolving and problem generacing. Tha aolution dependa (an illuatiatioñ
 1f, howevar, you áaume that eidae and theix langthe can bio diatinguiahed from

 1y. we can prove wichout too much fanfare that the lengti of the thitd alde e - ia qual to $\sqrt{a^{2}+\mathrm{c}^{2}}$.

 chat the reiationsbip io eythagorean one，indicotenobhat we can find the third alde ae unggested below：

 headed jn an nimust compuigive search for wat in happeninf：They are driven by some varistinn of tise questions
\bar{i} kion arcas are additive for the ounares oñ tie indes of a righit
triznite, but why are they additive for equisiēeral friañles áa
well.
 itsèf docs not always reveai why cilings operate as tiey jo．Someting more

 há further implications tiat one may ansert as problom or guention，nnc is
 in this case．（See walter añ Brown， 1977 and Hrown and waiter， $198 \overline{f o r}$ an elabisration of chis discugsionio

There arc podigo就cil tmplicationa that fow frim ciliese relacionshipg betmeen
 mas loave finplicitiy asked themelves jn combin up with the solition to a prublem－

 additional funstionn chey＂need co＂or might ank after they have supgorpaliv

On strategiea For Poning: An Accepting Modo

It it one thing to gugest what problem poang is worthwile or even nec-
 -everal otrategies for poaing problems, oum of wich are well diacuased in tha
 the next, we shall look at the activity of probleg generation in wode that
 in so dōng, we geturin to aituntiona á ataring point. Much of what we do oherc might be appropitate to apphy to the activéty of solving an alrcady stated
 aubsections)

(b) $\overline{5}, 12,19,26,33 ;$
4. theorems or postulates like the Fundamentin Theorem of Aritheric (every number can be expressed uniquely as an product of primē̃) *
 otfon, but the above slould serve the purpont of enabling to see how the airectiong ve might look townta in generatimg queationin: :

 make as much une of it in practice à we mikht. diven phonomonon $\mathbf{2}(\mathrm{b})$ for

 tó ask: Ahwut how many handahaké ara there?
(ii) Internal-and external views of Thtnis

Given siturtion $2(a)$, most people will ask tha rather familiar gutentions Whàt can you say about the bare anglest sque people might extend the base and ask alsont the external angles. Compnre thmae kinds of guestiona with one ike: -

Uow many isoscelé tudangia can you jodn to form che hub for a bicycle wheel?
how does the above question differ from the other inoncelea triangle queationat
it is worth pointing out that whle the firat set focuse on tha internail workinga of the phoncmenun; the one dealing with the hub taken the isonceles titañō in
 la focused on an internal view of objects and relatively littie takea na ita starting point the object an a whole:

- (lii) The Harticnlar and the Specific
llere is a theme inat, is particulaply iailent in cerms of cilifgan-perapective: Take n look at jobuve and pose áme prablems. .
 from sceink the uniquenesa of whaf in hefore us. Mone peopie ation j(a) and (b).
 all the terms: A careful look at datás tiowever, frequently mirgeatn that there

 by 5: W111 Ehat liuld in generalt ;

The sbove í cicarly not ádeation that would ariae if our fncus vere upon

 data beyund anarch far bume generinl blgebisic generating formuint

Many teaciner wish they knew more bout the history of mathematica so that

 from an effort on the part of túudente é well bs cerechers to engage in what ir

What pight hove been remponsible for getcion people to look et product of primes?
We can, for examale, imaglne machemetics commuity that focured oripinaliy on expressing uny given number é tiu sum of other numbers: Whitit ighit līāè. moved tisem to look et products inatemdt

These ere surely not the only categoricu for genciating problean while ae
 They do, huwever, ropresest atart and witi the cixeption of (i) cand not

 wī as tic categorié one mipit look towarís incíe generation uf quétions.

Poaing As An Adoiescunt

 chan tie the provious sibuection. Thoigh perhaps the most intrigning, this in tie
eapect of problem posing chat Marion Walter and thave writien mō̃ about chan

with the sugbixition that you refer tō relevant plecas cited if you wish rurther elaboration.

The concept of challenge, threat or adolencent rebellionis well captured by Hoferadtex (1982) when he commenté
 things: and you say 'Mhyt but itreum things diāt never were: and lamilng imprension ontan lirat heard this uphulam. it made a

counterfnctual worldsed with this atrange ablifty to congtruct

creativity. On the thene tealiy the crux of
possibily be truc? Aren' of it the thouis ía cīazy. Nlow can it

One to sue that what ve choose to cail new theme is iteelf alvay
some kind of variation, on deep level of earliar theme (p, 29).
Onc can start with a
ade
siny ōtier phencumuon and iñeesa or
accepting it as the given to be explored
one can chalienge it and in the act create new "itew

Constiler for example tic definition of apime number:
A uatiral number ie prime if it has sxāely two different divisor̄̄:

 ñ the other , hatul mint generate é hont of questioñ ilike:

$$
\begin{aligned}
& \text { What's no miectini ahout mumbers that hāve exactī cwo different }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Why do ue rocus on divizory can we rind numbere chat tiave exactiy }
\end{aligned}
$$

I Shail not conclnue wich tha liá of auch queation that can bancraced to challenge rather than accept the concept of prime number. (See Brow, 1978, 1981 for á thorough development eapecinily of che last questions lét me merely
 of "rebelifon" that one comen co better underatand the "thing" againat which one
 háa tha potential to be viqued as leas radical departure from atandard curriculum than ōne bight otherwise believe.

- Karion Waiter and i hava caken chs inaight of chailenging the given and creaced a secheme which we calíl "uliat-if-not." A number of people both within the cMESG group Gad outaide of it, have derived aome faseinating and imaginative concepts by employmanner, it is alao momething that can be done with taste.

Suppose one wishes to do "what-if-not". on the Fibonacci aequence: $\overline{1}, 1,2,3, \overline{5}, \overline{8}, 1 \overline{3}, 21,3 \overline{4}, \overline{55}, \ldots$.
For the frist atage of che achear; one liata the attributes of "the tiongeo wíhont
 Independence of atatementa and ac forth. Thus we migiv ilse among the attibutes: * 1. The sequence beginawith the same firat numbero
2. The $f 1$ rat two mumbers are 1.
3. if we do aumethlng to any two aucceasive cérinä, wē get thē nex̄e number in the sequence.
4. The somethlng we do is add.

 Supposo we chose 3 and 7.

At the next stage; we ask aoma new sec of àuentiona about che modified plienomenon. Suppose we begln by asking wiāt elie nē sequánce woulu louk like: to continne

- ${ }^{-}$
 nanumo is che ensence of mathematica-namoly we anatyza or try to anowar the quaction.
 we need not necesiarily feei obligated to do); we would get:

$$
\text { 3, } 7,10 \%, 17,27,44,71, \ldots
$$

 the second quention above, mont likely would look (among other thinga) at rat toe

$$
.42 ; .70 ; 588 ; .708, .614 ; .62
$$

Something snclis (an tn the equilateral tiangle example in the previoug

 Fibonacet ${ }^{\text {gequence. Why is that happening? }}$
 the original phinumenon-ne we indicated nbove.

We have barely begin to beeathe wealih of aurpriaing reauits in making use

 nowever. we tmplied the valite both of carafully employing the various; at pgen of :he "what-if-nut" acrotegy nod of interreinting them as weji.

In eloglng, it is worth potnting out thnt despite efforte to meclunize the

1974, 1975, 1981) I have olowi how it te that uae of pootic deytcen noch an
 tigure and हiround trequentiy account for our ability to aee whet it ia chut ic oupponealy exaring uy in the fece ell elons.

68


``` of rangiade fon. Sclentific Amorican. Ocfober, 1982. pr. 20-29.
Kohlberg; Lawrence. "Moral Stingeand Motivation: The Cosnitive Developmental Approach," In Lickona, Thomas (cdicor), Moral Development and Behavior: Theury, Reseäréli and Sucial ignues, lioic, Rínehntt and Wington. 1976. pp. 31-53.
Llckōa, Thomá (editor): Morail naviopment and Behavior: Theory, Resenrch and Soclal lsgueg, Holt, Rinchart and Winaton, 1976.
Lipman, Hat thew, Sharp. Ann S., Oacanyan, Frederick. philosopliy in she ClasaroomInseltutc for the Advancement of Philosupliy for Children; New Jerseg: 1977:
```



``` Edicational Revieu. Vol. S3, No. 2, May 1983. pp. 125-145.
McGinty, Rubert i.. and Heyerson, Lavrence, N. "Probiem Solving: Look Beyond J the \(\bar{R} 1\) ght Answer, " Mathematics Teacher; Vol. 73. No. 7. October 1980; pp. 501-503.
```



``` to Tenchlig Sociul Studies, I.ittle; Broun; 1970.
```



``` New York. 1959.
```



``` 1950. pp. 45-48.
```



``` No. 1, Fall 1977: pp, 4-13;
```



``` Nu. 46; Spring 1969: pf: 38-45.
```



``` Vo1. 3. No, 1. July 1982. pp. 45-47.
```


HORKING GROUP, A

cmindiak matiematicss educaitun studuy group June 1903 Métimg (ūnicuuveri)

Report of Morking Group \bar{A}
Developing statistical Thinking for All
by claude Gaulin-gif Jim Swify, Co-chàirmen

The Working Gropp set às its aim the development of áat of guldelines for the introduction of work on statistical thinking into lihe core curriculum. the concentration on stāíșicical thinking was deliberate. The group recognized the im.portance of aiso including PROBABitistic thinking in the core curriculum, but in the ifented time avaliable for diecussion, it was judged preferable to concentrate on the area of developing statistical thinking for ali.

A prefcorenulsite of the development of statistical thinking is a SEMSE OF MMBER: which mast be on important objective of the mathematics core curriculin. Number. sense is understood to include such concepts as estmotion, accuracy and size; and such skills as rounding and making approximations.

GOALS FOR THE DEVELOPMENTOF STATISTICAL THIMRING FOR ALL-

1. To dèvelop crítical átitưdes tomards cenclusions based on componly used stätistical arguments.
2. To develop those stitis of data exploration necessary for achieving " the first goal.
3. To develop an awareness of the uses of statistical argueents.
appropriate státistical topics for tie core curriculuny
The toplics fall into two broad areas:
(A) The tools of date andysis
(a) Numerical spomartes
collecting data and presenting them the form of tables; averages. percentages; proportions, etc:
Interpreting information presented in the forms mentloned above.

- Using averages and measures of variability to illuminate data.

Detecting patterns in data.
Recognizing appropriate and inappropriate use of numerical sumisies:
(b) Gorilicicaf stumanicé

Collecting data and presenting them In graphical form. Appropriate
forms laclude: circle charts. scāter plots iñ one and two varialijés, hok and whisker plots; stem año léf p!ots; här graphs. etc. Interpreting information presented in the graphical forms ment foned above. Using a varicty of plots tơ lllumanate a colléction of data. Detecting hifoden patterns in dàta:

- Investigating values that appear wifferent" (outliers). Making comparísoñ between collections of data presented in graphical form (e.g. comparing box and whisker plots of two sets of heights).

Emphas is and me thodology

The emphasis should be towards providing ways of overcoming the mistakes of judgenvent that so often arise when data dre examined. The work of Kalineman and Iversky [11 has clearly shown some of the kinds of mistakes that can occur in this context.
Students should be encouraged to develop their own interests by collecting and examining data from any subject that atiracts them. Project work. involving the planning and execution of an experiment that inclưes thē cōilē̄tiōn and interpretation of data-is also a most worthwile activicy: Much atteñión could alsn be given to the compilation of a colleation of interesting activi-: ties; data examples from newspapers; case studiés from practićing stàtisticiars; etc. that will illominate the teaching of stātistics. 121
The computer and the calculator offer conslderahie opportunities for eñancing the development of statistical thinking. Stuckents can concentrate on the use of the tools of data analysis; not as eñis in thē̄selves, hūt ās à wā of ex tracting informailon frem:an laterestling data set:- The compüter also facili: tates the exchange of data sêts in a format that allows studentsfa convenfent form of access.
Statistical thinking is not conflnēd tō tbe mathenatics cüricūlum. . Tēachers - are strongly encouraged to lōk for āplicátions of statistics in other subject - areas: In addition; the-development of statistical thinking Involves the use of tiabiy iun tiematical skilis and techiviques; e. gork on ratios. proportions. grāpis dind nundier sēnse: . Such rélnforceaneñ is a positive feature of a stronger enphasis. on statistical thinking.
(8) Sample surveys and their interpratation
(a) Oeveloping an understanding of, and a críical attitude towards. statenients made about surveys.
(b) Reconnizing misieading interpretations of survey daţa. (for example; such statements as "the Liberals have increased thelr share of the popular vote by 2 in are misjeadjng when the poll is only accurate to percentage points.)
 formation about a popylation.
(d) Using elementary methods of obtaining à sample from a population.

Emphas is and methodology

The emphasts should bee towards those activitués that develop an imiuitive understanding of the uses and ilinitations of syrveys. Methods that use tech- m nical jargon and emphasize probability models are not considered appropriate Tor the core curriculum. One successful approach has been to observe the variabillty that occurs when samples are taken from a Yes/mo populationand. to suanarize data frow 100 such samples In box and whisker fiot. thithis. , approach does not Involve the use of probability statements coniected with sur veys. In its deliberations about methodology: the group was very conscious of the importance of dealing with misconceptions concerning surveys like those shown in the work of Kahneman and treersky 11 I. A' valuable goal in teachingi, this topic is to alin at overcoming such eisconceptions as occur at a very basic Tevel.
Students should continoally challenged to ASK questions and be critical about A survey. Appropriate questions might includa: how were the data collected? Did every member of the population have the possitility of being included fint the sample? - Has th" sample_representative? Etc.- Such questions are a valume ble source of learning; particularly when applied to the surveys that are often condocted in other courses in the school. curriculw. There is no better way of revealing the 1 imitations of survey techniques than by beling actively $1 \bar{n}$ volved in one. The discussion following such Involvement can be tlluminating
The area of sample surveys is one of the most frequently reported areas of sted tistical thinking: There should be no difficuity in-including a strong emphiow sis on the use of newspaper sources wheñ this topice is being taught.
 and biases. Cambiridge Uñlversity Press, 1982.
[2] Cf: Stātistics Teacher Hetwork, edited by Foai. Anin Watkins, Dept. of Maths Los Angeles Plerce College, 6201 Hinnetika Ave., Hoodland Hilis, CR 9 g 371.
[3] Schaeffer 8 J. Swift Information from Samples. (Tio be published by the ASA/NCTM Joint Conalte on the Curriculum in Stat istics and Probability). Hote: a YES/MO population is one to which the words YES or 10 can be attached , to each member of the population (example: a population of black and white bālls in à sampling box).

APPENDICES

Appendix 1 Stätistics iñ the School cūrícülum, by r.j. Mackāy

Üiversity of. ©iteríus
Tic purpese of this note is to outline the mijor jrulilems nf Inciuiling "respectibic statistics" in tho schuol curticulium: By specifying these prohlems, ithink we can direct our energics asefolity

 toples are. The llst given below can le gencrated using many differiot

 are first that the topic should land to tho understanding of a frequentiy
 füther téschers should be able to iñ the tople to other parta of a motiematics/computer science corriculinio.

The fírstcriterinn is one of relevancy. The seconi is useful In conshlering haw a tople is to he presonted. Tho thiric criterion is progmilic, and recognizes that: statistical ícus wil lo frescuted hy . . non-spiccialists in à mothematics or computer sclence setting. Pur tio tenchers'siake, the statistlcal idens most he tled to tholr num diselpllioe:

The tuples Riven helow can be prescuted at many levels: ithoue my hríce cxamies wili give you the flavour that feci is requirmi.
 lurves, Brian Grabam. Alf Wnterman; Ted nedtery, Jlim Nakimato nad others.

Potential Topics
A. Number sense

 150 minthomaticlans can- perforim the same culculations
 miskō pē secionaf"
(VIctṓlia Times-Colonilat; Apili 24; 1983);

- (b) bograjhy of a nublicr
"22000 fower ciñ等s necied"
(victorja Times-Colonlat, fubrus
B. Sample surroys
(a) Yoircpresentative sumplos"
(b) from sample to population
(c) samplíug variability ${ }^{\text {a }}$
(d) mon-sumpling errors.
c. Statistical relationships and causation

(c) making comparisions in non-aleterministic setting.
D. nata añiḡis tōls

(b) Eraphicā sumarles (cg. scattor plots, box and whasker plot ect

Notes
(a) To make tiluese topics vivid, there are soverail possibīitics:
(i) the topics con be used to motivato mathempicul ideas. for oxample using scatter fints of reai data to Introlice cartesían coordinates.
(ii) the topics can loe Introducud by way of ä iotory"o or_cinasroom experiment in which the quest ions of interest are asked experit.
first.
 excrife.
 eg. Civen five oinservitious plins an unknown sixilu value x_{0}; plot the menn and the median of the datian x varles.

 schoot curriculim but it should he segmiated from staflsticul lueas.
 curitcillum, These methods arc Irrelevant for most stinjentā.

Prūblemán

lleie js a llst of prohicms which ithink can be addressed hy ithis workstuj bisling the given doples as a refurcice set.

1. Identification of source miterialstexnmples, potential prajects. ciassroan experimcits, testhomework prohicos; computer software ctc.)
2. development of delivery systam to make these moterials avaliable to practising tenchers
s. dovelupment of source miorinis with danalian content our hetter. of interest to Camadian stiments)
3. creation of ideas for linking statistical, concepts to mithemetics aind compliter science curricula.
4. teacher trining/re-training.

TRAINING IN DIAGNOSIS AND REMEDIATION FOR TEACHERS

REPORT TO CAMADIRY RATHEAATICS EDUCATION STUNY GROUP

 Re: Working Group B: Training in diagnoala and remediation for teacharis. Jūne 8 t̄ 12: 1983In recent yeara there hae been conaiderabla emphaía on diagnonefc-
 anāyzing compitational etrátegiea used by chīdren and thon recommending ' approprinte reteaching of Incorrect proceduren. Aenoclated with thif concarn. à Fé éducatoro hā
 clinica. Sowe clinics offer adignoatic eervice only othera offer an

 research setting for their faculty, and can be ufd to tratn tamehara. occanioa-
 ing the cilnic facilitias. Typically these couraea are avalable to graduatea or senfor undergraduates. A atudent wo efecta to take only the regilar intiroductory mathemitica metloda comráe would likely have very litespexpanre to the "diagnostic and remedial" concepte:

Tlie purpose of thia working Group la to examina more cloaely a recommanntion thar ali teachera be trained to hande diagnoaif end rumediation in the regular ciasaronm and what form thia might take. fo facilitate discumaion: aeleicted members wouldi he asked to prapare papera whifh anmarize dingmontic noui cilnice modela; botif for preservice aind innervice aituatione; and raice $-$ questlona whtch focus on thîe training.

Scveral innuas werydrained ulifch reault in the need fur furbiver stuily. What conatictoa functsonal numeracy? Ifow can it be measuredi What role ofunid the univerifity piny in pruvidink tho needed remudiation?.
b) Hlien otiudent teāchera are live rouluced to the concept of diagnonga
 lijāē iñ probiem sulving or estimiton. hemediation tends tu empinalze

 cerchin "bosica" including the basic facta and relevant algorichma ofhers noted that with tie avaliabilicy of hand liéd canculatorsa che extent of thit obilgation hied co be reevaluated.
c) It was nuted that urtit recently in gpectal educatiun, diagnomis typicaliy concentrated on identifying perceptual deficith, mucí us audícory or vísuñ perception dyefuncitons, of non-achicuing atiodents. In mathematics eilucation. the.diagnoais was mich mora labk-analytic oriented: That is, there was more of an atrempt to identify bpecifíc content objectivé where remedíaí work wae neoded. it was recognized that the current trend toward ihe intoncation of both approaché ia dusirable. Furkher atudy is needed un the extent of the intazration and on the emplianala the perceptinal deficit comporatit shoaid have in a mathematicn metioda couree.
\therefore

$$
\text { .- } 77 \text { - }
$$

$$
-78
$$

2.

Special education uadergreduate tratnina:
n) Of the neveral programe discusaed, it appeara that mpectal education
 categories. Fíratiy, they take some coursen that are in commón witio regular education etudente auch as reading and mathematics aethode.
 introduction to the mentalily retarded or the lenrning dinatied:

 teachingjretcachiné techniquea: Thirdiy; apeciaí education atudentá

 courae in'dingnomia and remediation of mithematica learing problemas.

 expressed in that miny graduntea of these progrnme will work à

 contine in corrective mathematica techinquea shonid be vicwed ás compulaory to the trâning of die speciailat. it wam noted that

 apicific inatructional recomendationa in aplte of the marvay. nathre of the tenta.

33

Severni memberm of the Eroup alao expreneted the apinlon tiat Elie craining of apecial educetion cearfince at che uidergrajuáce ievaí mbould lie revieved. Thana membera indientad tint the jekitia
 firat wökiñ wich clilldren lñagulaf clamaroom aettinge for

 Sum cilnica are annociated wich the cemching of aparicular
 culcié wlé jong range -pianning, foliming-up remediat fons biamed
 for the wident tancher. other cinica are operated independent of courae teaching. In thia eane the remediation doef not have to be tied to cie acmaster ayatem and it doen pernit workine uith a child for - longer perion but it involven other problem wuch an the paying and uperviaing of qualifled tutort.

Cínicu uperating dirtng the mumer aesmión whore some of the aome features é cilntce lielu during che fali ór winter but thay liave two malor advantagen, Children con apend more houra per day atudying mathematice. Andíchildren are more likaly tó pirticipane iu.
 No -pecific recommendationn or nugseationa uere forcinoming.

téchiliques that are routinely reconmended for hise wili elementary

tunglit Initialiy uning cnocrece materialí?

Gradinte prograga ens ragarch:
;

eduiation with a focus on diagnasia and remediatinn was prescai ed.

mulleroisica education (fnundatinns, advnnced methodu), educationai
fonnditinus (jearning theory; human develnpment); rescarch and

frim a serlea of nptinnal cnurses which wnuld inciude mathematice: spuriai educaition; and reading educatinn:
 two additional récomendat fons ware made. firsty, a collise in
 जt̄bition bhoula be given to the preparation of an integrated Mastér of education progran in diagnoain and remediation. Fnr
 ond earl cliflotood or mathematica and speciai education ahould be proposed and implemented.
b) Conducting research in dagnoatic-remedial aettinga has pressanted
 acudiea ubing iarge aample aizea given that elinical programg ofien contain too few subjects. Hence, researchera tend to rely on methods which ure came atudy spproaches. Onc concern related to the use of case stugu resesrch was expreģaed. Thia reacarch tenda tó te hypntheaia - gencrak.ag in nature rathé chan leading to apecific or "fractioner-oriented" sencxublons. But, it wan noted that currently more reaearch is utilipfog case atudy methodology: Thls ts likely due to the reapect aronted in : Migh quality; inaightiul reporting based on tliex. .. w. . .tex

Rathur than make apecific augestiona or recommeniations zelacins

 are often ifficuit to clamify and this led to some constieration of thē vilioé of pū̃

cilince were ecen as good secting to examina virimu pedngoglcal
molels and remedial technigues: áadela auchion teāching cyciem

> such as, the une of contrayring algoritime or of aptalfic manipuJntive mareriala: The extent ōf cōmputer uā fin remediátán was mentioned and appeare to require much further inveatigntion.
> An additional area thet recelved conelderation was the develnpuacnt
Cařyl koe (

Sthentiz

Thicoughout the several daxe of diacuman aeveral major thema appeared
 hence must not only be coumdered for that group of children identified rop in need of apecial help. Conaequently all pre-aervice Eeachern need tralnial n thīs aren. tilia training ahould inciude experience in the preparation ana iotern pretation of informal testíng procefure and with the develupment und impitmentakion of upproprtatc remedial cechniquen.

Secondly, mich more extenaive use muat be made of the hand held calculator. fila lé imperative when wnaking with oldar childrequmo may hava been etrugalfug unsucceaghully for aevaral yeara with partheular facta and nlgnritimag. it was nut ay clear ihạt the computer ohould recelvi tho mame empliasle. More atudy of Wiue role of computer in diagnoaia and prescription ia neuded.

Thírdly, apecial education etudente require much more expertise related

 working with clilidren who have mathematice learning nifiscuitice yet it appara

 thé Eirat chiree themeá nnced above.
flicily. Magter'
 diagnostic and remediai concerna in related fielas, much an rending and apecial eudcation. it de also posatbie that thíe kind of grajuate program suould cone to ba geen as zlie way to iraln "apecial educatora". rather thar undergraduate degrée prigrums.

Secindī, va戶tī more intereat neede to be ahown toward tie jenraing problems of atolemcenta at the aecondary achool wivel. The direciton for the intereat fertíā̄y must be diracted towarc diagimecic and remediai ieauea but
must almo include the development of relevane; opnlientson-intanted courfab:

 thar further stody of topiceas required before recomendactoms alomid be -

[^0]WORKING GROUP C
mathematics and language
-
91

nud romes nearar in tho trinth, In n thounanie yoare

$$
\begin{aligned}
& \text { - Aothe thictican! }
\end{aligned}
$$

 oul to: a deftiliton ím antinfactory only if tho etendente milareranil It.

- II. Patncare
 currsety slonild le able to tell what dt mina than there In wiỳ a plinet uhich ie moving correctly maunid kinu Kiofoter'm Invin.

$$
\text { - } n_{i} \text { Rusechit }
$$

 io ace to be very eatlefactury, though the accond la etorth mora unotul ilian the firat. Both ounfeetrliat compricneive eurvoya are tealiy

 uren eupplemented by eurvaye of particular localiciee.

Firs thile paper it conesider tiree clomike.

 a mramp of an "algebra" of latangel

Jo donlir mon canti a cile	It dunue sini canal domil
Jut luf donne mon contif	
Je le lui domuea	Il me je dm

 Ianjouitar?

 at this.) Can elitidren broupht up in n cotaily differout culture

 negation and funcification and chat cheso are sufficient for the developmeiic of mithematice.
 ifr ghecind inubinge. ilowaver atifled and atunted mathe icni develop-

Characterl:cics of mathemarital lanfliage

 matlcal lapitage in not precire in the mouse of "belng clear". Wu
 und nocicinciō àe nat alway compatible. (Teaclierā gecm more prone flon ituryora to confuse the two qualitics.
 menaini ve dintinguinli the object deacribed from objectes deacribed by "nquarv". "parallulogran", ete. But in order to glve a definitina,
 thia unablea ū to àà, for cxamplá,

> ö- gquare io ractangle"
> "a rectangle ia parallelogram"

 not firat encounter tie word "fiomer" by distingulshing the thing it deacribé from the ching duacritud lyy "rome", or vice-veraa. .
 5 bucouse ílic former io the curdinni numher nf arnper, subse of rhe wet of which the lintter is the cardinal number? Or berame_ 2 occurg before 5 in the counting orderf if we ubstitute the criteriou of n positive difference ($a<b$ if b $-\mathrm{B}>0$) wcifind ourueiver wrifing
 Sce Piann paper 1980) to ultination ore ouplied as metapiors In differŷt eituatinns..." "fkrinhtame urenerve at rurture but do not preserve meaning." Structure-equivalionte are not necenaarily meanlog-aquivalenta.

In an intercsting paper; Kaput_(1979) takes twu "axioms"- mintionatica Ic a formal atruciture, and mathematics taphaned on experfence. ile

 is (literaliy) onnsense. But tormal matiowntice is atemparal whére:s

 Increanea from left tó right ?)

A nantucr of aszorced napectie ocçur to me:

 alteruitive solutiona to problem, variatinina in sigorithme, rantrastiag prōts.
 we binve fór bugntincting the meanlings af worda and che validicy of

 of n phided diacussion to slow that mathematice, tuo, ruguires nugetia ation and an evoiving ciarity.

Defintitus are not devices for making thing cienr. Thuy enahic tlivaglit aud argument to be exact, buc tint is not (i ilifisk) ticír princiani function, A definition fiags an idun, n jercepton, nn auarencise and mays of it that it has a future that ihe fien uit be prodicitue The form of a definition may vnry, an we kunc, ro satisī criforin of convonience or elegnice but tieno oru mulinrifoate to the criturion of eignificence. Ue tend to chiak of an orginincod part of mothonotics as e coliection of theorem but it is
 classronsas give scudents even agimpae of thin procesn.

Hiy nre "word piobicms" much a bughear for mitimanticn atindents
 fart of the difficuity ties in the fact chat otudento (iarung igho) and traticrs (Nusher and Taubel; 1975) are alt tie cime collanding co convert word problems into algoritimic exercises.

Lorwig ilga points out (quotlog Bnurefelif) that in no ather sulaject

 not: In any case: n inkill that mathematicn tenchern ari fonergily gond at, (I liave au lined ayidence fort elits.) it if toa easy to

 in particular, tead to forget that soctares ment mint of his lifo
 cel1:

Roference:

 Eiducation Keporta; Oct. 1972
J. L. Aunt lu mid A.C. Huwnom: "langnage and mathomatic ! etisent lini". Educat funal Studica 111 Motlirmallics 10; 2 (Plny 1079):16.1-178

 (Jūly 1975): 41-5i

D. Plum, "fle laplour and nnalogy in machematica". For the Latarning of Háticmatice 1. 3: 47-50
J. sinclatr Languoge nind matlomation in acquínition. Addrean io ICRG-iv C̣ongrose, Berkeley, 1980
ii. Wertioliler, Prodnctive ithinking, herper, 1959.

 and second; they do it obscure the relationstip hetween the operations: Sore'iner examples In this category are:
 rather than polnt seventeen". The latter obscures meaning and makes officer coñnections more difificuit.
2. Names of polync isis: x^{2} should bé read w to the second power" not "x squared". unless a model for the latter lias aiready bén developed. A similiar, argument fiolds för \bar{x}^{3}
3. Ciassificatió of equations: ©irst degréc; second degree. third dégreé is probably more aeaningiul sequence than "linear; . quadíatic. cublcu.
 1s suggested by certain manipulative models
(e.ge- Culsenaire rods) and more eastiy léads
5. gases of numeration: Using the traditionai ianguage when working in other bases of numeration is cutubersome and obscures algebratc celationships. for a further discus: s,iō of this topic see the 1980 (laval).) prócéedíigs of CMESG. Also refer to Tŕivéte and gattagno (see bibilography).

The third cátegory ís eharactérizéd by cáreless ór incorrect fañoage usage and can be eilininated by tiē careful teacher. Sōne examples from this category are:
 over foup: The litier is devold of neanins and can ie d tónéeriōus problems in conputátions wín fráctions:
2. Reading and writing large numbers : piaine val ūe nāmē are of é iftic use in iearning io.read and write. large numbert. A more effective approach is to "read" the commas (Gattegnoj):
3. ifme and numbers " "One twenty five" is reading of ig25and one twenty five is one nundred tuenty five" is reading of the number 125 .

$$
=\underline{9}=
$$

-

i do not take the preceeding categorizftions to be deflnifive - or the lists of examples to be exhaustive, however l belleve that this or a similar exercisécan be of value to classínom téachers and teacher traliners, it has led me to, consider the rollowing criterla for making chóices about what languáge to use:

1. Use íanguage thá émphásizes, or át leást does not obscūré. mathematical structures.
 situation by the stodents or suggested by malpulative models in use.
2. Choose clarity over precision:
3. Usé language fin à consistēt moner:

Marín Horpmáa 7/83

Bibilographa

```
    Béli-F;H: "Posing And, Solving Verbal Problems". Mathematics Teacher, Dec.: 1980 .
    Confrey, Jeré: "Concepts; Pröresses; and Mathemitics Instructioin. ;
        for the Learnlng of Mathematics; 1981; voli.2; no.1; 8-12.
#
```



```
        Mathematics teaching! vol.98. Mar.. 1982.
```



```
        Educatiunal solutTons; ig\a.
    Gattegño. G. ond Hoffman, M, Mandbogk og Acityitiespopothe feachino-
        Of Mathematics at the Elementary school: New York: Muman Educatjon.
        Inc:-1976.
```



```
        Teachèr. Apr., 1980.
```



```
    Higginson, प्~\iliam. m"x" Arguments for qhé Consideration of Lánguage
        by Researchers in Mathematicis Education". Proceédings of tire
        1981 (Edmogton) meeting of CHESG/GCEDM.
            on) meeting of CHESG/GCEDM. -
*igginson, पililame. "Mathemattzing frogs". Mathematics teacher,
        Oct:-1981.
```



```
    Kline. Morris: Why Johnn! Can't Add. New York: Random House, ig
    Mōrley, Arthūr: - "Teaching and tedrning Algorithms": For the Learning
        of Máthemálics: 1901; vol.2; no:2; 50-51:
```



```
        the Learning of Mathematics, 1980; vol.1; no.1; 41-48.
```



```
        Teacher, Sept., 1982.
```



```
        of the 1980. (Lavil) areting of CMESG/GCEDM. 
```



```
        Mathematics teacher; Sept.. 1981.
```



```
    vol. 96; 34-37.
```



``` 29-34.
```



``` University Press. 1967.
```

Components of
A "Grammar" of Elementary Algebra Symbol Manipulation
David Kīrẹhner
University of British Columbia

The study of ilgebre may be, pursued in threu very
different ochoolsi the Practlcal; the
Philological or the Theoretical according as .
Algebra_itselitis_accounted_an_Ingtrument- or a
Language: or contemplationi according_as ease of operation; or symmetry of expression; or clearness of thought fithegere the forf; or the gapere; is eminentiy prized and sought zor.
(Wililam Rowán Hamilton: is37)

That mathematics can be regarded as à language has been noted by many authors (see Aiken 1972 for references)., More recentiy, éducators have begun to question either the validity, or more probably the utijity, of that connections
-
it bas frequentiy been pointed out that mathematics
itself is a formalized language and it has been
suggested that it should be taught as such
Such statements possess a degree of vailidity, but
would appear to be someuhat dangerous and potentially
confusing. Mathematics is not language a means of
commonication:- but an activity and a treasure house of
knowledge scquired over many centuries. (austin
Howson, 1979; p:176)
indeed severai of the provious speakers of this working group
have expressed a similar point of view.
6

102
ar

Attempts in the past at drawing the connection have generally focussed on idéntifying structures of lánguage in mathematics or vice versa. In my current résearch, mathematics is regarded as a language not so that knowledge of language may be applied to mathematics, but rather so that the techniques designed for the study of language may be applied the the study of máthematics: indeed, in the narrow sense by which ifinguistes

From now on l will consider a language to be a set
(finite or infinite) of sentences. each inite in (length

- and constructed out of a finite set of elements. All
natural languages in their spoken or written formare
languages in this sense, since each naturāl language has
a finite number of phonemes.... Similarly, the set of
sentences of some formalized system of mathematics can be considéréd a language. (Chomsky, i957, p.2)
it is not possible for me, iñ the short time availabie today, to outline in any detail the linguists methods, or to elaborate on the way in which i have adapted those methods for the study of algebra. \bar{A} fē words, however, are needed to define exactly what is meant by "ásentence" of elementary álgebráand to ídentify the basic élements of which sentences are comprised.
i interpret the térm sentence in linguistics to référ to the smallest unit of discourse which will normally be uttered by á speaner who ís being átended by ifisteners. in naturai language study, then, sentences correspond to the Etatements; questions and exçamations of normal speech. by analogy; sentences of


```
equafions solving) and to the simplification of algebraic
```



```
algebraic symbols: The basic elements of which these sentences
```



```
    The ilinguistic program is the development of a grammar which
```



```
upoñ thè bàsic
In my Etuर्\y, the simpjification of algebraic expressions has been
```



```
cañ be regarded as a cognitive theory. The_devicesemployed by..._
```



```
competent manipulator of algebraic symbols: Nlternative'grammars
```



```
grammar from amongst alternatives on the basis of competing
psychological clädme:
    In the case of natural language, lingūistices iñōlves
analysis à a variety, of levels (phonemic, morphemic, phrase
gíructure, semantic, etci: त grammar oof algebralic manipulation
```



```
outlified during'the remalnder of my talk.
```

[^1]
Abstract

2: 5. Applićation Component. This penultimaté lēvél deals with the actual application of reâl number propertiạs to syntactically determined expresilons. This component specifies á decision procedure to détermine whéther a particulár transformation là applicable to à given àgebrác expression. G. Semonte component. Thus tár the levels of analysis defined allow for the production ot stringes such às - $4 x^{2}-12 x-16=4\left(x^{2}-3 x-4\right)=4\left(x^{1-1}-y+y-3 x-5+11\right.$ as - Both of thése invoive the correct application of correct reâl number properties. it is necessary, hovever, to exclude sentences of the fornér sort which àré in some sense algebraicaily, meaningless". The semantic component consistes of à classification of sentence rypes according to the purposes Which àre normaliy associated with expression simplification such as factoring, reducing fractional expressions, rationallizing radicai, denominators, étc. in each of these cases it is necescary to delineate the initiá configurátons required and the sequence of transformations to be applied. (i have not yet constructed the semantic component). : it is postulated that these six components of the algebraict soccespifi manipulation of algebraíc expressions. To the extent

106

References

Aiken; L R: Lanaguage factors in learning mathematics. Mathematics Education Reports; October 1972. (ERIC Document Reproduction Service_NO. ED_068_390)
dustin; J: L: \& Howson: A: G. Language and mathematical education Educational Studies in Machematics; 1979; 10, 161-197.
Chomsky, Noam: Syntactic structures: The Mague: Mouton \& Co:- 1957.
Hamiltón, W. R: Theory of conjugate fonctions, or algebraic couples i with a preliminary and elementary essay on algēbride the science of pure time: Transactions of Ehé Roysi Irish Academq. 1837, XVII, 293-422.

- MORKING GROUP'D
$\sqrt{3}$
titie influence of computer science on the undergraduate MATHEMATICS CURRICULUM

REVAMPing tuie matiematics Curkiculuma

THE INELUENCE OF COMPUTERS
by Bernařd R. Holgson and John Poland干

Aimont every mathematićs department in canada has experienced a drop in the number of students graduating with a mathematics degres at the bachelor's levelí in many cases, to an unheaitify leveí. This phenomenon has occurred in wany other countries. too; and it is ciear that the attractiveness of a career o in our sister subject, computing, if_amañ factor, computing là the new, clallenging and preatigious frontier. But there are a number of key Eactors in thif computer revolution that we feel wil compel speciflc changes in undergraduate mathematics education. Let us spell out what we see se these key tactors, the problems to which they give rise and scenarios of probable reactions and solutions.

- Most important, in the next few years we can expect to sea large numbers of freshmen in our mathemtics clabses with a substantiai experience with microconputerés and thely prógranaiñ packages. Many provinces arẹ comintited to extensive distíbution ó these facilities to secondary schools and many studente are eagé to learn. At the undergraduate level we will see more

and backup mathematics. of course, computer programs will ghtinue, to grow in thelr ablity to do àrduous multipreciaion calcialations and carry out our standard numerfcal algorithms life simpson's rule. or 'row reduction of.matrices), as well as grow in thè ablity to तo routine aigebralc manipulations lilke Eechniques of indefinite integration or aolving equations for specified variables). And the increasing abillty of computer progrāms to carry out rbutine undergraduate mathematics also comes with á growth of the neq area of moderin applled mathematios mathematical computer science (from computational complexity and probabilistic

Dóés mathematica as we teach it now really addreses these changes? We fuclitiat most of the undergraduate lintroductory mathẹnatics coürses in calcūlū, linear algebrà and abstract algebra are presented ln the clāsaroom àsethough computers do not exist: llow can we expect to be considered as teaching to our stưdentes when for example we présent the traditional techniques of ıntegration (e.g. partlà fractions) and our atudents know tiat Already there áre packagés to do theme symbolic aigeb c manlpulatons on the conputer, and in ary case computer programso exist to evaiuate definlíe integfals wíthout uplng antideriontives? This iliustrates that some of the content of thes courses needs to be deemphanzed, especialiy dacit relates to the actuai passage to and evaluation of solutions that computers can obtaln ic.f. p.j. Hition in (CMESG Bj〕). But the more we use computers for these processes, the more we wili need to emphasize checking and galidation. The question is that thorny one of relevance. How relevant is our approach to the calculus or, algebra? How relevant is the actual content of our cournes? Are there other toplcs we should be introducing to the students? And how relevant does mathematics seem to them as a way of soiving questions with whicll they are or expect to be concerned? what we

5
Wish most to share here is our feeling that the attitudes and orpectations of the majority of our freshmen who have some intereet intmathenatics ia and wili continue to be for some time that the most chailenging and meaningful problems have to do with computersAnd this must be acknowledged in our methods of moeivating our etudents, and students from other discipilnes takingour courses:

- In what reasonable waya 解ght we modify the content and
 Eo folnt out that Ehis aituation can be addressed at different levels. Right ln the claagroom we can mace use of hándheld calculatore or miciocomputer with a number of dxsplay units to palnlessiy cớllect empíical data as grounda fór hypotheses and ā
 éfectively Illustrating resulta. Outside the ciassroom, ageignments to the studente can involve flmilar computer-réáed methode and can incurporate experience wíty existing computer packages, such as irnpach in ilnear algebzá. Here wo see the computer as a very powerful tool. Next, ass we have argued above, the existence of these computer programs nilows us to shift our viownoint when we come tó teach varioug methods of caiculation. Apprcximation; estimation and optimization wili gain in emphasis finciuding at the becondary school leveli. Aigorithms are centrai: t̄o computing. We can expect an algorithmic way ō thinking to growi
in mathematics. it willstres racursion, iteration and induction as its tools, and routinely inclufe such topics aa computational effort whan an aigorithm ia introduced, including the neceasity of formalizing aigorithme iñ order to analyze them: to meet this
(7. perspective, we could uae more algorithmic, constructive mathods of proof where appropriate. At the same time, weria not forget the appropriatenens of many arame of menematics to the study of
 possible madification. *

For the contant of our courses; the demand fō an introduction to the materiai of mathematicat comptiter acience ta ciear. tíe more advanced of thence on discrete structures or the design and anaiysis of aigoríhme or fintúe nutoman theory are appearing in most undergraduate mathematics calendars and their adoption is generaily not probiematic. But the most elementāy of these, under tilie umbrelia tíle of diacrée mathematica, is
Cuírentiy the subject of a debate, based in the united stáses, on whether to offer auch a course as an ātérnative to the caiculus in the freshmen year iralston $\overline{8} \overline{1}$ and future $\overline{8} \bar{j} \bar{j}$. in aumary of the - the freshmen year rralston 81 and frure (and hence no satífactory. syliabusif) for buch a Díacrete. Mā́hematics course yet exdétsi añ the caiculus may be à more effective vehicie for téaching mathematicai paturity, by ulrcue of its own maturity, depth and wide appilcability. let us lonk at these two' pointa:

Frérūeotiy the proposed curriculum for the freshmen

- Discrete máliematice çourse ta collection of traditional mathematicat results; बintiā to present Pinite Mathematics

 purpose with such a coursci to iñ $\overline{\text { poduce the seuneñe to a tanguaga }}$ and some elementary resulís ubeful iñ átudying compūter bēteñce? Or can wo go further and show the power or mathematcal thinking? Research in monern applled mathematice shows us the rēevance to : the discusaion and solution of major computer acience
probiemá, can we convey this to our atudente convincingiyz one approach might be caurse on congruences over the integers, finite ciélā, polynomiala and coding theory. Another, on the combinatorial anaiysis of algorithma, wáa outined by m. wilf in • (future 日3, $\bar{p}, 38$) and is aimilar to chapters 2 and 3 of-the
 ullman:
what is the basic pergpective we shouid retain wen considering these changes; what is our overall goait The major recommendation of ICUPM ail was to capture the students' interest and lead them to develop both the ability for rigorous misthematical reasoning and the ablilty to generalize from the particular to the abstract: In thia context it ahould be recalled that the science Council atudy of methematical sciencea in canada (coleman 76) found -älmost all mathematice protessore allege thăt theif highest ambition in undergraduate teaching is to convey not specific content but rather way of thinking"; a way of thinking that even our colleagues miother disciplines consider important and wish their studentes to undergo when taking our courses. . It is so eaḡ when teaching epecific content to forget that our subject matér, mäthematica, is one of the grāateat rinteliectual achiévemente of mankind: true, many intrqductory calculus coursees are présented ás mere exposition regurgitation, but how much grêater is the posesiblity that the original proposais of a Discréte Mathematice course degeneráte into meaningleasa junk can wo offer our studant courses in which the power ot mathematics can be remonstrated in computér ecience and thé vaiue of the computér in mathematice can be appreciáted in ite proper role?

$$
\begin{array}{r}
\\
\\
\therefore \quad 114
\end{array}
$$

pexhapos the mosé atitactive option is to binena the new

 Examples of such lntegiated courses can be found through our

 would appreclate hearing of others. Students graduating with such a modified undergraduate mathematics education would be better prepared for future changeas and to use the full range of their
fathematicni trainihg in their work. A model that appeals to us is that of someone beginning with a large database, taking the limit to obtaln a continuous function lncorporatíng thia data, perhaps ae the solution of a differeqtial equation, and then solving a

- diacrete approxination to this continuum formulation, for example uasing the finite element method and linear algebra.

Before you declde on the nature and detalis of the changes you would tike to sce in undergraduate mathematics education in your university, do read the well consldered proposals of ICupm Bil, the many sources and ldeas in [CMESG 821 and our annotated blbilography. If you begin with smali changes in yóur courses, these will probably be mainiy in style, and you should onilect resources; incluaing texts that incorporate this atyle in their presentatión (e.g. [StRANG 80j in linear algebraz lwonnacotr 771 in calculusi:. for larger, "currlcula"; changes you will need to

116

－子x，

- 111 =
[APPLICATIONS 79] Applications of Linear Algebra, 2nd editín. Lis C. Rarres and II. Aviton, Wiley. 1979.

Cood (inexpensive) supplement to any standard sopho-morē-level textbook. Includes̃ topics fron wide variety of fields business. economics, engincering physics. Chapters are independent and are rated according to their difficulty.
$*$

EAPPLICATIONS 80] Applications for Elenentary Linear Apebras, S.I. Grossman, Wadsworth, 1980.

Somewhat similar to [APRLICATIONS 79], butt with less coverage. $\bar{\top}$
 tion in 1984"-G: Birkhoff, Anerican Mathentical Monthy 79(1972) 648-657.

Supports use of conputers for study-of the 1 1mit concept. rates of convergence, equation-solving, formula manipulation,ctc: New courses, to be widely taught by 1984 ': discrēte mathematics, nimerical mathemace".
[Gresc 82] Proceeding of the 2982 Anouci keecing of the
 Drose. 1982. (Available from Educational Eeoourcea Informetion Conter (EXIC). Ohio State Vaiveraity. Columbue. On10.)
 the influcoce of computer netaece os undergraduate mehamele educeqion, iocludiag eppodicea bi cisht of the ooe dozen partiefpaota. i lively. ultifacesed
 83j- vith men concrete misoactoano

117

 Progras, Report of the comittee oon the Diderzriduate progroe in mathemetic: (CURH), ad. A.c. Tucker.

 resdine in septenber every feeco
 and C.S. Youns; Springer-veries, Nev York, 1983.

4 collection of ipviced papera for a siona Fougdiciō
confereme in 1982 with brief reporte oo thé

of the papera centre aboū the quegion of replaciag
introductor calculus by diserete mathentica

curriculum developent is efther too Eēnial in
prinelple to aé bō li fould be ifplemeated or coa opecific in conēata to cáç a हlimar of tbé opirite Courae decerptione by Eos. Widf (p.38) and

 S.P. Gor̃on , American Mathenatical Monthyy 86 (1979) 386-391:

Describes an approach to calculus which incorporateg the computer "in a particularly natural way": finite differences and sums are used "to motivate the infinitestmal calailus and to provide the appropriste setting for solying "reap" problems using discrete approximationsi. (It is claimed in [RASTON 81$]$ that the computer should influence the mathematics curriculum more profoundly than such local uses.) Contains a good biblio- $\therefore \quad \therefore$ graphy of articies about incorporating computing in the calcuins sequence:
 Int- J. Math. Edrac. Sci. Teclnol. 10 (1979) 21-31.

Similjar to [cunoon 29a], but ulth less mathematical contents whil E moré gencral disoisston. contains ai analyals of ex. perimental 3 mplantations of this approach.

Iow finite techniques and the coanuter can replaco much of white is done in cont inuout applied mathematict. From the preface: "In this book we mill develop cuaputer, gäther thans a cont joman, approwih to the dotoministic timorles of pràjçē nechanićs. (...) At those polats where lewton. lelliniz, and Einstén foied it necessany to apply the analytical puwer oi the calci're; - shallo-instead; apply the conputer ional puor of modern digital computers.- (....) The price we pay for the mithomatical simplicity of our apoc

 fर्तारicĩ; Miley, 1977.

Programs by tho author juplemencing algoritums in number theory, eranation solving indacricial integration, evaluation of spec lal fumitions. futeresting in the way he uses many areas of mithcmatics to prokive aljonitims that are fast encough to run on a programuble pocket calculator.
 Gurflculum; Conitten on Applied Mathenitict friniañs
 phyaical sciences, Hational Rearerch Councti, Wanhlagtor, 1979.
 of reahaplog che efonchins of vachemelcia to meet she neede ondid

 -- che gop between abneraet end applice matheatiea and creacius
 primeipal probles an baine eac of aerizuda.

120
thiltow 823 The emphosis on appled matiomatics today mud its implications for the mathenties curgiculuma, p.J. Illiton; in: New Directions in Appled Mothenatics. ed. P.j. Aliton and G.S. Young; Springer-Verleg; 1982, P\%: 155-163:

Dy the chalmean of the "Uliscn panci" responsible for the report [IIJLTKN 791. As in che calk presented in (aSEG 83]. pronotes the unity of tho wathanatcal sciences: oqlight the sterilc antagonism which one sometiues finds today lietween pure and applied mathematics and pure and applied mathema-ticians-be elimfnated by bundoring those jabels and rever-, ting to cho notion of a single ind visibie déscipline: mathumstes."
"Compiter science and its relation to-mothematics", D.E.

A personal vieis of the inturactions between couputer sicience and mathcmallcs. Discussion of a "rypleal computer science problonn"(hasbling) to illustrato she simularities and differences between the two fielids. Describes camputer sclencé is "the study of algoritnas".".
 Lax: ©. हursten and त. Lax, Springer-verlag, 1976. \div
In [HOTICES 83], the first aughor pupores the view that: calculus struld romajn the cencerpiece of nathematics education in the first two years of collese. but it is essential. he adds, the medify the wry it is tavgit aceording to the 'mudern splrit' - for example by takling into acrōint the lupact of computing. His conceptions can be found in this inspirioge text which emplinsizes the relation of calculus to science. Nanericāl methods are présented as orgunic parts of calculus, not nere appendices, while chanpe of varlables or integration by parts serve to get now ancograis easier to approximite numorically. A must read :
［McCar̄̄ 75］．Calaulator Calailus，G．Nocarty，Pāgē－Fickiln； 1975.
A workbook to accompany à convent fonà calculus text：
Uses the pocket calculator to illustrate the theory：
Each chapter contains several oxamples with detailed discissions and couplete solutions；easy exercices and more difficult problens：Most important theorems are usually cited explicity．
＂Calculator calculus and roundof errors＂－C．Miel； American Mathenatical Monthly 87 （1980）243－253．

Although the colalator can reinforce understanding of calculus notions，indiscriminate use of it or lack of warevess of the effects of roundoff errors can lead to aistaken interpretations of results．Nicely illustrà－ tes the point with many examples；for instance zeno＇s paradox seen in the context of roundoff errors．Exten－ sive bibliography．

MILES 713 ＂Calculus and the computer；the CRICISAM calculus pro－ ject－Past present and portent＂．E．P．Miles，Jr．： Nwertcon Mathematical Mingthiy 78 （1971）284－291．

On the history of the CRICISAM calculus project．（In－ formations on CRICISAM can also be found in Miles＇paper in the book．（TOMORROW 81J．）

CMCOELS $7 \overline{3} j$ Mathematical Models and Applications．D． \bar{P} ．Maki and M． Thompson；prentice－finll，1973．
Intended for junior and senior sudents．Topics covered include yarkov chains，linear optinization；graphs and， growth＿processes（both by means of diffentiai and finite growh＿processusions）．Each chapter has exercises；Frectil projects and a good bibliography．Authors suggest a variet of courses that can be taught from the book：survey，in－dei teacher preparation．

Inteinded for the juinior-senior level. Three long chipters (over 100 pages each on mechanical vibrations population dymamics and traffic flow. Pleasant to read, avery good rext for an undergraduate introdiction to techniques of applied mathematics. Chapter'on population dynamics uses both a discrete and a continuous approach. :


``` Mathenotical sociezt 30; 1983; pp. 166-171: Trobicript of a panel difeugion on chic tople ot the Aonual meetiaz io Depver ia 1983, vith apeokero
```



``` Notevorthy ic Ralotoo -a remink that "wo need oo -lterontive to freohmon colculue ubleb la pot a
```


[RNSTON 81$]$ 'Comiuter science, mathematics and the undergraduate rurricula in both;- A. Ralston; Knerican Mathematical Monthly ${ }^{88}, 1981, \mathrm{pp} .472-485$.

1 The article that provoked the conference [FUURE 83], arguing for the consideration of a separate mathematics curriculum for computer science undergradiates, beginning_with a discrete mathenatics eourse rather than calculus. A well -argued introdiction to the topic which notes that, however desirable and valuable; the use of computers in the calculus and other courses is not sufficient. -There has been little realization that the advent of compute:s and contuter sctence might suggest some fundamentale changes in the [童thematics] undergraduate curriculun." (See also the longer technical report, with the same titie, on which this paper is based; Tecmical report 161 ; Dept:of Computer science; suny at buffalo; 1980:)
Φ
123.

"Mathematics courses in 1984", J.B. Rosser, Amer. Nath. Monthy 99 (1972) 635-648.
'Uniess we revise the calculus course, and the differential equations coursa; and probably the inear algebra courseand I do not kow, what other courses, so as to embody wich usi of computers, mact of the clientele for these courses will instead be takin. coaputer courses in 1984:"
"I believe [the averoge student] would be-letter offlearnings the oigorithm in mathematical couroe, if they àre property teught there. If they aro property taught!"
[stimas 60) Lidear ilrehra eed ite Appifictione (Second

 compneational divicualoae taciudiog the tebility aed efficiency of the algorithes, and notes on himphra. Well-dedizmed frem ehe viov point of minicel limear ifelra; bat mod at the cencept and ooe of limar cramoformetions:

 Inexpinaive goft covar edition, cas be need in coajuection wich any caicuim text:


``` Tiles Hew York- 1977.
```



``` calcolua \(\left.{ }^{( }\right)\)ond differentiation oituation ("infigitefel calcoluam). 'tia teachivg ability ohowa fe thie readable texto
```

L intuitions and fallacies in reasoning about próobablity - by daniel kahneman

Department of Psychology
university of British columeia
a mathematics curriculum development in canada: a Projection for the future

- - by Tom Kieren
department of Secondary education University of Alberta

IOPIC GROUP L

 included in:

JUDGEMENTS UNDER UNCERTAINTY: HEURISTICS AND BIASES,
 \% University Press, 1982.

127

$$
\text { 有: } 122-
$$

LIST OF PARTLCIPAITS

```
<1983
```

128

LiSt of participant i histe pis pawtipants.

 cresc 1 Ccrim 1903Jollin Rurry
Department. if pialliematicn
Unlveraliy of fintcoba

RLellard Berirand
1035 1.014is Simill
Ste: - Fuy, ge ciw 328
Rtek Blake
Eaciolty of Edacat faí
University of New brunswlek
Frédertétini; N:B: E3B 6E3 \sim
Stephen Brown
Eaciolley uf Eiluciot loñ

Buffalu. N.Y: U.S.E:
Rende Ciriili
335'Sefnotitial ducet, Appo. 7
St. - Brimio - ie - Montarville
\%
Roolort R. mintition
Deparcmont if hiatlomat ices
Uilverafty uf liritiali Columbia
Vancunver, R.C. V́GT IHS
Ā.J. (Sanjv) Bawmon
Farolty of Eilueat ion
simmin friser liniverafity
Ruruabv, B.C. VSA IS6
Michavi X. Bitks
Faculty of Fitheatiun
Uuiversity of Brilsyl Colimbla

Bouklas Edpo
Faculty uf Balicalton
University of Britioll Columbia
Vancouver, R.C. V6T iz5
Divid Rilia
4702 Argyla surrec.
Vancouver, H.C. VSN 3X

BEST COPY AVAILABLE

Gruc! Franor
2210 bunplin Mica
Buruaby. B.C. V5s 469
Clanidy (Eimilat
Departemutit lle didacrifue
Diafueralté láamal
Maíher: QC GIK 7P4

Dẹpärement of thit liomatione and Stntist tes

Faciolty of kuccation
queen"e Univaritity
Klngsion. hienrió k7t mo
Petcr llitton

SUUNY at B B mingituation
Bloghame
Bernard B. ilindgan

Universite linval
quétice, nc iik $7^{\overline{4}}$
Martsu Uoffman
Departmant of Btationatsen
quenta Collerso
Fludling, N.Y. U.S.A.

Finculty of Eiducat fun
Unlvernlcy uf lifielali columbla
yanconver, B.c. v6T [ī5
Zars Jannaon
Facillty of bducat fon
Uolveraity nf Rrailtoba

C.I.e Kaller

Department of hathematica
Okanagnn coillage
Kelnina, B.c. VIY ls3

- 124 -

Arthur Powail
572 Waslington Avenue
Brookiyn, New York 11238
U.S.E.A.

Medhāt Râhism
Dapart ment of Hathamatica
Univarify of Alberta
Edenton; Alberte TGC, $2 E I$
David Robitailla
Feculty of Education
Untveraigy of Britieh columbia
Vencouver; B.c. V6T 125

- LoA. Roungaer

Faculty of Education
Univeraity of Britioh Columbia
Vencouver, E.C. V6T 125
Wraver Roux
Univeraite du quebac Rimouaki
a 300 ave dan Urauínea

Facuity of Education
Univaraity of Briciah Columbia
vancouver. is.c. v6T 125

Departwent of Puré Mathematice
Univeraicy of Materlō

J15 Swifx
R.R. 13; SLEE E

Nanalmof, b.C. V9R 5K3
Hattex sāécia
Faculty of educetion.
Uñiveriaty of Brieliti Columbia
Vancoūvar: B.C- V6T 125
Alan Tayior
Mloistry of Education
835_Humboldt_Serect
Victoria; B.C. v8v 214
Fater D. Taylor
Department of Mathemetice and Stitiatica

- $125=$

Jnlua V. Trivelit
Faculty of Eduriatina
SImon Friaser lililvarsity
Buruahy, B.C. Vin is6

- Charies verbilio

Faculty nf Edincat lon
UnIveraily of Now arunswick
Fredericenn. N.n. EjB 6Ej
Pauline Wetnatcin
Yacuicy nf edueation
Universiey of Bricieh Columbia
Vancnuver; B.C. VGT 125
David-Wheeler
Department of Hatiormatice
Conenedin Universicy.
Montreal; QC. 1148 186

[^0]:

[^1]: I. Classífcation of Bāic Eicmente. The first stage is the identification of the basic elements and their assignment to various ciasses leg. operators, quantity symbols, and grouping symbols). Ās àn example, íhe $\sqrt{\text { symbol is interpreted às à }}$ conjunction of two symbols: \downarrow. and - - belonging to the operator and grouping syntol cácegoriés réspectivèy.
 r -
 2. Expressions. Having established the basic elements of the cheory and their ciassification, the next step is co rigorousiy define which strings of symbols wili be considered as

 3. parsing. • This component determines the parse of wéli formed expressions. For example, it is necessary to define $\frac{1}{3} x^{2}$

 4. Transformations. The fourth stage is concerned with the properties óf reai numbers which are used in the generation of one algebraic expression from another. These include

 manipulator of algebraic symbols may bring to bear on one expression in the derivation óf another.

